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Abstract 

Climate and land-use change influence ecosystem service types provided by hydrological 

processes of river basins.  Previous studies used either different climate models with the 

same resolution or the same model at varying resolution to examine the impact of climate 

and land-use change on hydrological ecosystem services. The potential of reducing 

uncertainty in climate change impact studies with different climate models at different 

resolution is yet to be explored. This study, therefore, was designed to use climate models 

of varied resolutions to assess the combined impact of climate and land-use change on 

hydrological ecosystem services such as seasonal water yield, nutrient and sediment 

delivery ratios in the Pra River basin, Ghana.  

The Statistical Mechanics and Dynamical Systems theories were adopted as framework 

and the Theory of Change for validation. Two Rossby Centre Regional Atmospheric 

Models, two Weather Research and Forecasting Models and one statistical downscaling 

model at 44km, 12km and 2m resolution respectively were purposively selected and used 

with generated land use/cover maps of 1986, 2002 and 2018 from satellite images to model 

seasonal water yield, nutrient and sediment delivery ratios. Using the reference data from 

1981-2010, climate projection was conducted for 2020ï2049 and using the Integrated 

Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The results from the 

model were evaluated based on farmerôs perception of climate and land-use change within 

the basin. A multi-stage sampling technique was used to purposively select 10 districts and 

344 farmers to whom a semi-structured questionnaire focusing on perception of climate 

and land-use changes was administered. Questionnaire data were analysed using 

descriptive statistics.  

The ensemble of the five climate models projected rainfall to decrease by 1.77% and 

temperature increase by 1.25ºC in future. The variation in monthly rainfall could result in 

seasonal shift from a bi-modal to mono-modal rainfall pattern in future. Agricultural 

expansion and urbanization were the drivers of land cover change in the basin. Mean 

annual water yield at 0 - 335 mm in the control period was projected to decrease by 35% in 

future under the ensemble mean climate. The combined impact of climate and land-use 

change was adverse on nitrogen delivery and complimentary on phosphorus and sediment 

delivery when compared to their individual impact. Awareness of climate change was high 

(98.3%) among the farmers and they were extremely vulnerable to its impact. The use of 

improved crop varieties (97.1%), agrochemicals (96.2%) and on-farm tree planting 

(95.3%) were the major climate change adaptation strategies of farmers. Farmer's 

observation of temperature trends was consistent with gauge station records, however, 

rainfall trend was contrary. Farmers indicated that agriculture (79.4%) and small-scale 

mining (42.7%) were the major cause of deforestation driven by financial status (72.4%), 

climate change (64.5%) and market demand (63.7%).  

Climate and land-use change will influence water availability and nitrogen export 

adversely and control erosion and phosphorus export in the Pra River Basin of Ghana 

between 2020 and 2049. Therefore, management practices that protect vegetation should 

be encouraged to control nutrient and sediment export and improve farmersô resilience 

through climate-smart agriculture.  
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CHAPTER ONE  

INTRODUCTION  

1.1 Background to the study 

Globally, available water quantity and quality are diminishing, making water a scarce 

commodity in this era of climate change. Degradation of a watershed is one of the direct 

causes (Murphy and Kapelle, 2014). Ecosystemôs structure and its functions play a vital 

role in water sustainability (Enanga et al., 2011). Climate change threatens the 

sustainability of ecosystem services, especially in developing countries (Niang et al., 2014; 

Boon and Ahenkan, 2012) with the potential to cause negative trend in the changes that 

could happen (Bangash et al., 2013). Climate change is further projected to increase global 

temperature and change the patterns of rainfall, with more erratic changes in tropical 

regions (López-Moreno et al., 2011; Marcé et al., 2010). The projected changes could lead 

to environmental extremes like flooding and droughts, which may be less felt by the 

developed world because of better economic and political stability, and improved 

agricultural technology (Davis et al., 2015). However, the impact is quite great in Africa 

due to poverty and political instability amongst others (FAO, 2009; Bo et al., 2004; UNEP, 

2002a).  

Hydrological ecosystem services (freshwater, soil and nutrient regulation, and erosion 

control among others) and ecohydrological processes are directly affected by changes in 

terrestrial ecosystem components (Brauman et al., 2007). Forested areas contribute to 

groundwater recharge and maintaining surface water and consist of rich biological 

diversity. Sustainability of hydrological ecosystem services around the globe is currently a 

challenge due to unplanned use that resulted from population and economic growth, 

changes in land use and global dynamics (World Bank Group, 2016). Seasonal changes 

and water demand is a major risk especially now under climate change and consistent 

population growth (Allen et al., 2018; IPCC, 2014). The riverine ecosystem could be 

degraded as environmental flow reduces (Jujnovsky et al., 2010).  

Water management systems, especially for agriculture, should be part of the forest 

conservation measures. Failure to protect ecosystem service directly linked with freshwater 

provision will affect livelihoods. This is because the production of these ecosystem 
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services are fundamental to food security as well as the protection of human lives and 

properties (Duku et al., 2015; Jujnovsky et al., 2010). Ecosystem services are the benefits 

humans derive from intermediary productions via the relationship between ecological 

structures and processes (Brauman et al., 2007). Measures of valorising ecosystem services 

are necessary as part of an innovative mechanism to highlight positive outcomes capable of 

addressing the challenge of degradation in watersheds. A better understanding of the 

interactions between hydrological system and its impacting factors (climate and land use) 

on social and ecological systems are necessary for effective governance and formulation of 

adaptation and mitigation strategies. 

 

1.2 Problem statement  

Inter-Governmental Panel on Climate Change (IPCC, 2007) projected 10 ï 30 % reduction 

in water availability in mid of the century at mid-latitudes and in the dry tropics. Water 

availability in major West African basins is projected to decrease by 10 ï 40 % from mid 

to the end of the twenty-first century (Sylla et al., 2018). This is also the present scenario 

in the Pra River Basin, Ghana, due to current land use trends (Asare-Donkor and Adimado, 

2016; Kusimi et al., 2015; Murphy and Kapelle, 2014; Oduro et al., 2012; Akrasi and 

Ansa-Asare, 2008). The main sources of pollution in the river basin are illegal artisanal 

small scale miners popularly referred to as ñgalamseyò (see Fig. 1.1), discharge of 

untreated liquid waste into water bodies and nutrient-laden run-off from commercial 

activities of residents in nearby villages (Ansa-Asare et al., 2014). The quality of majority 

of the river water in the basin is reported to be fairly good, few were poor and none in the 

class of good water quality (WRC, 2012). Groundwater as an alternative source of water 

for agricultural development has potential at only  24.5 % of the total land area of Ghana 

(Gumma and Pavelic, 2013). This calls for the regular assessment of surface water yield 

and quality in the basin threatened by uncertain climate and uncontrolled land use land 

cover (LULC) changes (Obuobie et al., 2012).  

A rising world population, forecast to be 8.5 and 9.7 billion people by 2030 and 2050 

respectively with Africa contributing about 20 % and 26 % in the respective projected 

years will result in increased wealth and changing dietary preferences (UN, 2015).  

Composition of food demand is projected to be 2960 and 3070 kcal/p/d in 2030 and 2050 

respectively (Alexandratos and Bruinsma, 2012; Bruinsma, 2009). According to Steduto et 
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al. (2012), a 70 % increase in food production at the global scale is required to meet the 

demand in 2050. Water scarcity is the major potential constraint to future food production 

(Davis et al., 2015; Steduto et al., 2012). Human activity, population growth, failure to 

implement policy and inadequate law enforcement have led to the degrading state of the 

Pra River Basin to the extent that although water is largely available, it is not in the form 

that could be readily utilised, thus resulting in water stress (Murphy and Kapelle, 2014).  

The population of the basin is made up of farmers majorly, who cultivate cocoa (the 

highest economic crop in Ghana) at large scale. Deforestation practices (timber extraction, 

fuelwood and charcoal production), crop production intensification through inorganic 

fertili ser usage and poor farming practices are changing the vegetative cover in the basin 

thereby augmenting or degrading the services it provides (Kusimi et al., 2015; Akrasi and 

Ansa-Asare, 2008; Brauman et al., 2007). According to Bentil (2011) a water treatment 

plant in Ghana stopped its operations due to intense sediment export as a result of 

galamsey. Sustainable management of river basins is critical challenges in Ghana due to 

intense human activities (Duncan et al., 2019). 

According to Obuobie et al. (2012), the Pra River Basin is already water-stressed. The 

basin was projected to experience water scarcity (water supply less than 1000 m3/capita/y) 

and absolute scarcity (water supply less than 500 m3/capita/y) in 2020 and 2050 

respectively (Obuobie et al., 2012). Climate change is expected to worsen the situation in 

the Pra River Basin since the projections were done without considering its impact (IPCC, 

2014). Modelling how hydrological system will respond to a specific Representative 

Concentration Pathway (RCP) and land-use change gives an indication of what is likely to 

happen and help to prepare appropriate adaptation measures to reduce shocks. Therefore, 

to achieve the desired state (water quantity and quality being adequate for both 

environmental flows and human needs) of the Pra River Basin, further research is required 

to provide relevant information to all users for valorisation and understanding of the 

impacts of their activities (Murphy and Kapelle, 2014). 
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Fig. 1.1. State of the Pra River: (a) before and (b) after intense illegal mining ñgalamseyò 

activity.  

Note: The later image described as ñNowò was in 2016 

(Source: ArthurȤMensah, 2016) 
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1.3 Justification of the study 

Climate change impact studies either combine different spatial resolutions of the same 

climate model (Nikiema et al., 2017; Bossa et al., 2014) or different models of the same 

resolution (Okafor et al., 2019; Stanzel et al., 2018; Sylla et al., 2018; Amisigo et al., 

2015; Aich et al., 2014; Jacob et al., 2007) in reducing uncertainty of projections. In 

Ghana, no climate impact study to the best of knowledge at the time of this work had 

employed a high spatial resolution climate model (in meters) to assess future water 

availability under climate change. This study combined different regional climate models 

with different spatial resolutions including a statistical downscaling model (resolution in 

meters) to compare model performance at a local scale and also to assess the impact of 

climate change from their ensemble mean on hydrological ecosystem services in the near 

future.  

Mapping ecosystem services and their distribution at a local scale helps to identify areas 

under pressure for immediate interventions (Bangash et al., 2013). The capacity of a 

vegetation cover to offer hydrological ecosystem services like the reduction of runoff and 

nutrient regulation depends on the dynamics of changes in land use and land cover 

(Jujnovsky et al., 2010). The effect could be either adverse or complimentary. Therefore, 

this study sought to investigate the trend of the impact of changes in vegetation cover 

hereby referred to as land use/cover changes on hydrological ecosystem service delivery in 

order to determine the best adaptive management practices for the sustainable provision of 

these services. Furthermore, the study compared the standalone and combined impact of 

climate and land-use change on hydrological ecosystem services to identify the source of 

adverse impact on services for proper and specific interventions, especially in policy.  

Hydrological ecosystem services are poorly monitored in Sub-Saharan Africa (SSA) for 

sustainable utilisation because of limited understanding of its importance to livelihood and 

poor availability of data. The Natural Capital Project (Sharp et al., 2016) has developed an 

ecosystem valuation model called the Integrated Valuation of Ecosystem Services and 

Tradeoffs (InVEST)1 with minimum input data requirement which will serve the needs of 

Sub-Saharan Africa but it has not been adequately adopted yet. Testing and adopting the 

                                                 
1 InVEST simplifies water movement by combining the movement of groundwater and surface water. It 

assumes that groundwater and surface water follows the same flow path to reach a stream. The model run on 

production function information in literature encoded within its deterministic sub-models (Sharp et al., 2016).  
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InVEST model which is capable of serving areas with scarce data (Volk, 2014) will 

facilitate a decision-making process, protect the degrading ecosystem and improve 

monitoring of ecosystem conservation (Sharp et al., 2016; Dimobe et al., 2015). This study 

was also with a view to providing frameworks for a broad range of policy and planning 

decisions relating to the environment and human well-being in the Pra River Basin. 

1.4 Aim and objectives  

The aim of this study was to assess climate and land-use change impact on the seasonal 

water yield, sediments and nutrients delivery ratios in the Pra River Basin of Ghana. 

Specifically, the study sought to;  

I. project climate variability and change of temperature and rainfall from four 

regional climate models and one statistical downscaling model for the period 2020 

ï 2049 (future) with reference to 1981 ï 2010 (control).  

II.  analyse land use/cover changes from 1986 to 2018 in the basin. 

III.  model the changes in seasonal water yield, sediments and nutrients delivery ratios 

in the Pra River Basin for both historical and projected climate periods. 

IV.  assess the perception and adaptation strategies of farmers to climate change and the 

drivers of land use/cover change in the basin.  

 

1.5 Research questions 

i. What would be the future change and trend in temperature and rainfall 

distribution in the basin using a downscaled regional climate models and 

statistical downscaling model? 

ii.  Have the land use/cover changed significantly over time in the Pra River Basin? 

iii.  What are the impacts of climate and land use/cover changes on water yield, 

sediments and nutrient yield in the basin? 

iv. How do farmers perceive and cope with climate change and what are the 

observed drivers of land-use change in the basin? 
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1.6 Hypothesis 

i. Combined climate and land-use changes impact on seasonal water yield is in the 

same pattern as individual impact at the basin level. 

ii.  The amount of sediments and nutrient delivery ratios in a basin is a function of both 

climate and land-use changes. 

 

1.7 Scope of the study 

The climate analysis was limited to seven stations with available data of rainfall, maximum 

and minimum temperature between the period of 1981 ï 2010. Future climate projections 

were between the period of 2020 ï 2049 and analysis was carried out for the mean 

temperature at 2 m and rainfall. Two Coordinated Regional Climate Downscaling 

Experiment (CORDEX) on the African domain and two Weather Research and Forecasting 

(WRF) models focusing on the West African Region and one statistical downscaling model 

for station level modelling were used. Land use analysis was limited to two interval image 

analysis (1986 ï 2002 and 2002 - 2018) due to lack of good freely available satellite 

images. Information available and reported in literature were used to gather biophysical 

data for the modelling of water yield, sediments and nutrient delivery ratios in the 

Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models. A total 

number of 344 respondents out of 399 sample size from 10 randomly sampled districts 

were interviewed. 
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CHAPTER TWO  

THEORETICAL FRAMEWORK AND LITERATURE REVIEW  

2.1 Conceptual Review 

2.1.1 Hydrological ecosystem services  

An ecosystem is a complex system of a plant, animal, fungal, and microorganism 

communities with their associated non-living environment such as water resources in the 

context of this study, all interacting as an ecological unit (CBD, 2009; Bond et al., 2008). 

Water resources provide numerous services to humans, which are sometimes termed as 

hydrological services. They encompass all the benefits humans get because of the 

terrestrial ecosystem effects on freshwater. Previous studies have divided ecosystem 

services into three categories; regulating, provisioning and cultural services (CICES, 2013; 

Kandziora et al., 2013; MEA, 2005). The services that define water resources in any 

category is further defined by their quantity, quality, location, and timing of flow 

(Brauman et al., 2007). The process of water flow in a landscape is impacted by its 

surrounding ecosystem. Therefore, water resources are directly influenced by terrestrial 

ecosystem services to either improve or degrade the supply of hydrologic services on its 

attributes.  

The definition of hydrological ecosystem services has been evolving over the years 

(Schmalz et al., 2016; Martin-Ortega et al., 2015). Land cover/use is one of the immediate 

terrestrial ecosystems with direct impact on water resources. Its effect on these services 

differs from location to location due to the spatial and temporal scale and their 

inconsistencies with landscape hydrologic responses (Rodriguez-Iturbe, 2000). It is evident 

that those located upstream of a basin or watershed receive different benefits than those 

downstream. Land-use change might have positive or negative impact on water resource 

availability as well as the microclimate of the basin. Hydrological response varies with 

climate, geography and ecosystem type (Brauman et al., 2007). However, limited research 

has been conducted in the tropics compared to the temperate ecosystem to ascertain this 

fact. This has brought to the fore the need to assess hydrological ecosystem services in 

varying soil types, rainfall patterns and changing land uses.  

Agriculture as a land-use practice can introduce pollutants into a stream at a faster rate via 

both surface and sub-surface lateral flow, whereas this might not be the case in a forest 
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environment due to increased infiltration and reduced water yield by its canopies effects on 

precipitation. The geographic variability in the coupled impact of vegetation on hydrologic 

ecosystem services makes it difficult to predict the actual anthropogenic influence in the 

process (Martin-Ortega et al., 2015; Brauman et al., 2007). 

  

2.1.1.1 Valori sation of ecosystem services 

Valuing the attribute of ecosystem service is paramount to decision making. However, 

variation in the location of the services and land use being compared or contrasted 

influence the outcome of the value. An earlier study in the USA discovered that farmers in 

California have a net benefit from vegetated buffer strips, which improve the water quality 

available to them and at the same time reducing soil erosion (Rein, 1999). Also, the kind of 

ecosystem being delivered affects its value. The importance of watersheds and river basins 

to a community often determines the kind of community and traditional laws made to 

protect it. Although this has led to the evolution of models used to value hydrological 

ecosystem services (Guo et al., 2006), most African countries are yet to understand and 

plan based on drainage basin instead of the usual administrative boundaries. Another area 

of disparity is the spatial and economic disconnection between land users and beneficiaries 

of ecosystem services being derived (Brauman et al., 2007). A good policy mechanism is 

needed to harmonise these two sides to curtail the rate at which land-use changes occur, 

with or without the corresponding consequences on water delivery in a basin under 

consideration. 

In the era of external drivers such as climate change, ecosystem service management must 

be prioritised for sustainability. Majority of the policies available to manage ecosystems 

are government-based. The policy mechanisms are usually voluntary payments, which 

allow non-government agencies to contribute to conservation, government control of land, 

government regulations and government incentive payments (Brauman et al., 2007). FAO 

(2002) in their bulletin and other studies such as Daily and Ellison (2002) expands on these 

mechanisms. The government can protect hydrologic ecosystem services by directly 

paying landowners to be able to control the changes that take place on them. Land use has 

been identified to play a major role in the characterisation of water resources and 

ecosystem services delivery in a basin or watershed. In some countries, landowners are 

paid specific amount for the services supplied from their land whereas in other countries 
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services are valued before payment is made. Governments adopt different measures of 

conservation and protection based on the prevailing conditions on the land that supplies 

them with the needed services (Martin-Ortega et al., 2015). To assess feedback between 

hydrologic service delivery and land use, appropriate policy mechanisms must be in place 

to harmonise geographic, economic and cultural differences between landowners and those 

who benefit from services delivered by such ecosystems.  

Brauman et al. (2007) identified that site-specific assessment information about the 

biophysical, social, economic and institutional dimension of ecosystem services are very 

important in the quest to understand and manage it. This is due to the variations in delivery 

based on landscape, vegetation and climate influence which are also geographically 

oriented. The information is vital to policymakers as they will be informed of the changes 

that are natural as well as those exacerbated by humans to help plan a specific conservation 

approach to them. The spatial nature of ecosystem services makes mapping an important 

tool in the assessment of the connections between delivery and beneficiaries. Mapping of 

ecosystem services is usually conducted by proxy-based maps (Terrado et al., 2014; 

Eigenbrod et al., 2010). 

 

2.1.1.2 Attributes of hydrological ecosystem services 

The attributes of water services are quantity, quality, location delivery and timing of 

delivery. Most people are informed about the first two, which are water quantity and 

quality because of their immediate impact on the environment and human activities. Water 

quantity is the amount of water available for drinking or for agricultural purposes. It also 

describes the volume of floodwater, whereas water quality is a measure of the levels of 

chemicals, pathogens, nutrients, salts, and sediments in surface and groundwater (Brauman 

et al., 2007). Ecosystem only modifies the water moving through it but does not create or 

add to its mass. However, an ecosystem contributes maximally to the quality of water 

passing through it by either adding or removing contamination from the flow.  The 

quantity of water available at a particular time and location can be calculated with the 

water budget model in Equation 2.1. 
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ὗ ὖ Ὁ ‬ὡ                             (2.1) 

where;  

 ὗ = Water discharged from a watershed (surface + ground); P = Precipitation 

 E = Evapotranspiration (water use by plants + evaporation) and  

 ‬ὡ = Changes in water storage (surface + ground) 

Ecosystem services such as transporting and redistribution of water affect the volume of 

water available to users in a watershed. The use of water by plants reduces water quantity 

available in a basin. Its location per time might be beneficial or harmful when found where 

it is not needed such as flooding near settlements. Both the location of water above or 

below ground levels are important for watershed management planning (Brauman et al., 

2007). Downstream users might not have access to the volume delivered to the watershed 

from precipitation as compared to those upstream. Changes in an ecosystem (land 

use/cover changes) alter its delivery of water quality and can be measured with indicators 

such as changes in loads and concentration of chemical and physical properties and altered 

response to changes in extreme rainfall events.  

Murphy and Kapelle (2014) recommends the assessment of land use/cover dynamics in the 

critical riparian areas in all river basins in Ghana due to the role played by aerodynamic 

characteristics of vegetation in the redistribution of water from vegetation to the 

atmosphere. There are limited studies done on the comparison of changes in surface and 

groundwater availability in a given LULC change. On the other hand, substantial research 

on surface flow in catchments has shown that streamflow is reduced by approximately 45 

% when grassland is converted to forest land cover (Brauman et al., 2007). Taller trees, 

deep-rooted plants, smooth vegetation amongst other characteristics have their specific 

contribution to either the availability or scarcity of water in a watershed. Soils, slope, 

vegetation type and its age and management practice in a watershed are some of the drivers 

of water resources availability. These drivers vary spatially and in time, therefore, 

recommendations were made for site-specific and regional assessments for regular 

monitoring of their contribution to hydrological ecosystem services. Due to the daily and 

seasonal variations in contamination movements through a watershed which can span 

many years, assessments of these services must be done over an extended period. 

Therefore, models have been introduced for the assessment and monitoring of ecosystems 
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effects on quality of water in a watershed (Bagstad et al., 2013a; Tallis et al., 2013). 

Ecosystem contributes to water quality of both surface and groundwater flows through 

various processes including physically trapping water and sediments, holding 

contaminants, enhancing infiltration via reduced water speed, transforming biochemical 

components of nutrients and contaminants, and nutrients uptake and regulation with its 

erosion control and water purification characteristics (Martin-Ortega et al., 2015).  

Vegetative cover and tree heights influence the force with which raindrops hit the surface 

of the soil and further contributes to the reduction of rainfall impact by the amount of 

debris on the surface of the soil. It has been discovered that forests and other matured 

ecosystems improve the quality of water in a catchment. The protection of watersheds is 

mostly based on the ability of land covers to either improve or maintain water quality 

(Brauman et al., 2007). This affirms that land cover is a major driver in the delivery of 

ecosystem service, in relation to water quality. And changes in land cover over time in any 

basin calls for assessment so that site-specific planning and adaptation strategies can be 

developed. Murphy and Kapelle (2014) recommended that a critical assessment and 

identification of ecosystem services need to be carried out for the Pra River and Kakum 

River basins in Ghana. Precipitation is distributed seasonally across the globe and in an 

uneven quantity. Knowing when precipitation will occur is very important to farmers, 

construction workers and anyone who uses water for his/her activities. This is because 

water has a significant impact on their projects/occupation both directly and indirectly. The 

attribute of timing is defined as when water is or will be available (Brauman et al., 2007). 

The timing of precipitation determines how beneficial or harmful it will be per location. 

Information about the duration, seasons and predictable changes in stream flows and flood 

peaks are necessary for adaptation and management adjustment in a catchment. The timing 

of delivery is affected by land-use alterations which affect infiltration, groundwater 

recharge, subsurface lateral flow and rate of runoff (Guillemette et al., 2005). 

  

2.1.2 Water footprint  

Water covers about three-quarters of the earthôs surface, however, 97.5 % of it is saline 

water (Shiklomanov and Rodda, 2003). Freshwater forms only 2.5 % of the global water 

stock. This is further distributed over the earth in the form of ice, snow and liquid. 

According to Hoekstra and Mekonnen (2011), accessible freshwater of the global water 
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resources is less than 1 %. Freshwater as a renewable resource makes the accessible 

amount enough to meet human needs. However, the uneven spatial and temporal 

distribution of it often causes water scarcity (Savenije, 2000). The increasing demand for 

water also increases the pressure on accessible water resources especially in countries that 

are unfortunately located in water-scarce zones. To effectively manage and account for 

freshwater resources, the quantity and quality cannot be limited to the available or 

accessible amount in a country or river basin (Hoekstra, 2011).  

The concept of water footprint is rooted in the earlier concept of virtual water introduced in 

the 1990s (Allan, 1998). Virtual water comprises of the total volume of water required to 

produce a good or service and it considers all inputs throughout the supply chain of 

production (Hoekstra and Chapagain, 2007). Water footprint is defined as an indicator of 

freshwater use that considers the direct and indirect water required to produce a product, 

measured over the full supply chain (Hoekstra et al., 2011). The concept also considers the 

origin of the water used, its quantity and quality impacts by grouping them into blue, green 

and grey water (Hastings and Pegram, 2012). Blue, green and grey water is one of the 

central concepts of water footprint that distinguishes its consumption. Other concepts are 

the direct and indirect water use and consumptive versus non-consumptive water 

withdrawals. The consumption concepts are defined as follows (Abdelkader et al., 2018; 

Hastings and Pegram, 2012): 

¶ Blue water footprint: It refers to the amount of water used for the production of a 

good or service sourced from the surface or ground.  

¶ Green water footprint: It refers to the amount of rainfall directly trapped by crops 

for the production of goods or services before the remaining runoff or infiltrate into 

the soil to recharge groundwater. Temporaril y stored rainfall on top of soils for 

plant use is considered under green water footprint. 

¶ Grey water footprint: It refers to the amount of fresh water needed to dilute 

pollutants in a water body to acceptable standard of water quality. 

World Bank statistics indicate that 75 % of the worldôs poorest countries located in Sub-

Saharan Africa rely on agriculture as the main source of livelihood (WFN, 2018). 

Enhancing agricultural performance is considered central to social and economic 

development in this region. A projection carried out by the Water Footprint Network in 

seven sub-Saharan African countries in 2016 revealed that agriculture contributes between 



14  

 

22 ï 42 % of their GDP employing about 45 % of the total workforce in these nations. 

Moreover, the main use of the water footprint was for agriculture.  

Ghana was reported to face blue water scarcity during dry seasons (November ï February) 

in the year. Globally, blue water scarcity is estimated at 85 % per river basin analysis. 

When the annual average monthly blue water scarcity values per river basin are weighted 

according to population per basin it increases the global blue water scarcity to 133 % 

(Hoekstra and Mekonnen, 2011). Ghana was a net virtual importer of blue water and the 

largest green water exporter amongst the seven countries. It means that Ghana exports 

more products produced from rain-fed agriculture than it imports. The project 

recommended that farmers should be trained in sustainable agriculture practices that will 

increase their yield and reduce water footprint since their production is majorly rain-fed 

(WFN, 2018). 

  

2.1.3 Climate Change 

The Inter-governmental Panel on Climate Change (2007) defines climate as the average 

weather or the statistical mean and variance of relevant variables like temperature, 

precipitation, and wind over a long period. The World Meteorological Organization 

(WMO) defines the classical period of climate assessment to be a minimum of 30 years. 

IPCC (2007) further connected the definition of climate change to it cause whether natural 

variability or human activity. However, the United Nations Framework Convention on 

Climate Change (UNFCCC), attributed climate change to human activities either directly 

or indirectly. The climate is affected when changes in the atmosphere, land, ocean, 

biosphere and cryosphere resulting from both natural and anthropogenic activities can 

perturb the Earthôs radiation budget, producing a radiative forcing (Cubasch et al., 2013). 

The drivers of change in climate may include, changes in the solar irradiance and changes 

in atmospheric trace gas and aerosol concentrations.  

According to research, each of the last three decades has been successively warmer at the 

Earthôs surface than any preceding decade since 1850. The global average combining land 

and ocean surface temperature data as calculated by a linear trend shows warming of 

0.85°C (0.65-1.06°C) over the period 1880 to 2012 (IPCC, 2014). Anthropogenic 

greenhouse gas emissions (GHGs) have increased since the pre-industrial era, driven 
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largely by economic and population growth, confirming UNFCCCôs definition of climate 

change (IPCC, 2007). Global warming since the mid-twentieth century could be traced to 

the human-induced concentration of carbon dioxide, methane and nitrous oxide in the 

atmosphere. Between 1951ï2010, findings show that GHGs contributed to a global mean 

surface warming between 0.5°C and 1.3°C (Bindoff et al., 2013). Anthropogenic forcings 

were reported to have a likely contribution between ï0.6°C and 0.1°C and that from 

natural forcings likely to be between ï0.1°C and 0.1°C. (Bindoff et al., 2013).  

Climate change assessment in Africa recorded low to medium confidence in historical 

trends because of partial lack of data due to insufficient climate stations with consistent 

records, and also inconsistency in the reporting of available data. However, extreme 

temperature change was observed for areas with adequate data (Seneviratne et al., 2012). 

The future temperature under RCP 8.5 scenario for Africa projected an increase in the 

range of 3°C - 6°C in reference to 1986 ï 2005 as base period for the 21st century which 

was observed to be rising faster compared the global rise in temperature (Niang et al., 

2014).  

2.1.3.1 Climate Representative Concentration Pathways (RCPs) 

The terms climate scenarios and climate pathways have been used interchangeably due to 

the overlapping nature of the route or their definitions (Rosenbloom, 2017). According to 

IPCC (2000), a climate scenario entails the integrated description of likely future 

possibilities of the atmospheric system based on internally consistent narratives of both 

quantitative and qualitative trends.  It is the conceptual framework behind the development 

of greenhouse gases emissions, climate change projections and climate change impact 

assessment (Allen et al., 2018). The concept of scenarios allowed the inclusion of socio-

economic influence on energy and land-use change trends and its possible emissions into 

climate projection in biogeochemical models. Scenarios focus on climate policy. The 

Special Report on Emissions Scenarios (SRES) has been in use since the inception of the 

IPCC Assessment Reports (IPCC, 2000; Leggett et al., 1992). Climate pathway, on the 

other hand encompasses the periods of scenario evolution from the greenhouse gases 

emission scenarios to the socio-economic development and allows for the representation of 

scenarios as a standalone or in combination with others (Allen et al., 2018).  

The trajectories of GHG concentration for climate projection are described under the 

Representative Concentration Pathways (RCPs) (van Vuuren et al., 2011). Due to the 
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limitation of SRES to account for GHG emission reduction in future, the RCPs with a 

focus on human-induced climate change was developed into four trajectories of GHG 

concentrations to span the 21st century.  The century was projected to start with a radiative 

forcing of 2.6 W/m2 and run through two intermediary concentrations at 4.5 and 6.0 W/m2 

before ending the century at a maximum of 8.5 W/m2 (van Vuuren et al., 2011). The IPCC 

Fifth Assessment Report (AR5) and the Coupled Model Intercomparison Project Phase 5 

(CMIP5) assessed the RCPs (IPCC, 2014; Taylor et al., 2012). 

2.1.3.2 Global Circulation Models (GCMs) 

Global circulation models are based on computer programing of physical processes to 

replicate the functioning of the global climate system, as accurately as possible (Fenech et 

al., 2007). The complex interactions modelled are between the atmosphere, ocean, land 

surface, snow and ice, the global ecosystem and a variety of chemical and biological 

processes (Flato et al., 2013). It helps to understand how the climate system responds to 

increasing concentrations of greenhouse gases in the atmosphere. Global circulation 

models use mathematical equations to replicate the global climate system in three in three 

spatial dimensions and in time. However, due to the limitation of GCMs in capturing local 

climate variabilities, local climate simulations are needed for impact studies (Machenhauer 

et al., 1996). The development of downscaling models has provided an appreciable 

solution to this gap which was in climate change impact studies. Climate scenarios from 

GCMs can be used to assess the impact of climate change on agricultural and hydrological 

resources (Wigley et al., 1990). 

2.1.3.3 Climate downscaling  

Regional-scale climate information is important because global models are often too low in 

resolution to resolve regional features (Flato et al., 2013). Statistical and dynamical 

downscaling are used to generate region-specific climate information. Downscaling is a 

medium of closing the gap between climate models and observed records for the purpose 

of impact studies (Wilby and Wigley, 1997). Statistical downscaling (SD) involves 

deriving empirical relationships linking large-scale atmospheric variables (predictors) and 

local/regional climate variables (predictands). Interpolations are some of the statistical 

measures used for downscaling large scale atmospheric variables to local climate (Wigley 

et al., 1990). Statistical downscaling methods may also be applied to RCM output (Paeth, 
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2011; Van Vliet et al., 2011; Segui et al., 2010). The whole ideology of downscaling 

presupposes that, because of anthropogenic forcings, there will be significant (and 

predictable) changes in the stochastic simulation parameters (such as weather patterns), 

depending on the methodology adopted. All downscaling models have been found to be 

developed on one or more of the four methods namely; regression methods, weather 

pattern approaches, stochastic weather generators and limited area climate models (Wilby 

and Wigley, 1997). 

2.1.3.4 Statistical downscaling model for climate projection  

Statistical interpolation procedures adopted in statistical downscaling models are probably 

the most efficient method for obtaining details of local scenarios from GCMs and RCMs 

(Wigley et al., 1990). The three main classes of spatial downscaling are transfer functions, 

weather typing and stochastic weather generators (Fenech et al., 2007). There are 

numerous types of statistical downscaling climate model packages available for climate 

impact studies, namely the Statistical Downscaling Model (SDSM), the Long Ashton 

Research Station (LARS) Weather Generator (LARS-WG) and the Automated Statistical 

Downscaling (ASD) tool. Statistical Downscaling models have been used in assessing 

climate impacts with highly efficient predictions in terms of accuracy level. Downscaling 

in SDSM by two statistical processes, namely, stochastic weather generation and multiple 

linear regression algorithm.  

2.1.3.5 Uncertainties in climate modelling  

Parameterisation has been identified as a major error in climate models (Flato et al., 2013). 

It is due to the limited, though gradually increasing, understanding of very complex 

processes and the inherent challenges in mathematically representing the atmospheric 

process. Cloud processes, distribution of aerosols and simulation of sea ice remain major 

sources of uncertainty as well as the parameterisation of nitrogen and forest fires which 

pose as limitations in the biogeochemical components in Earth System Models. 

Parameterisation errors are the same in regional climate models (Evans et al., 2012; Boone 

et al., 2010; Pfeiffer and Zängl, 2010; Laprise et al., 2008; Wyser et al., 2008).  

Resolution of a climate model, propagation of bias in the model association, palaeoclimate 

reconstructions, specified greenhouse gases scenarios in radiative forcings, and 

observational errors are also sources of uncertainty (Flato et al., 2013). Some phenomena 
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or aspects of climate are found to be better simulated with models run at higher horizontal 

and/or vertical resolution. Besides the propagation of bias of one model affects others in 

the association. The root cause of biases resulting in the error of propagation is still 

unclear. The insufficient length or quality of observational data makes model evaluation 

challenging especially with the quality of data on arctic cloud properties, ocean heat 

content, heat and freshwater fluxes over the ocean and extreme precipitation. It has been 

found that newly observed data affect model evaluation conclusions in the current analysis 

(Flato et al., 2013). 

 

2.1.4 Land use and land cover (LULC) change  

Land use is defined differently by different disciplines and sectors. Whereas the natural 

scientists see land use as human induce change on natural vegetation, the social scientists 

and land managers define it in the context of socio-economic purposes (Ayivor and 

Gordon, 2012; Ellis and Pontius, 2007). It implies that land-use change may not be a 

physical alteration of land cover only.  

2.1.4.1 Drivers of land-use change 

Land-use changes have been found to be influenced by many factors globally. These 

drivers or factors may vary from location to location pertaining to the activities and 

environmental conditions of the place and triggered by interactions between biophysical 

and human activities (Geist et al., 2006). One of the major drivers of land-use change in 

the Pra River Basin is population growth. Very densely populated cities like Kumasi and 

Obuasi are located in the basin (GSS, 2014). This city is mostly termed the central part of 

Ghana, receiving migrants from mostly the northern part of the nation (Adaawen and 

Owusu, 2013). Population growth has been found to increase the demand of land for both 

settlement and agriculture to meet the food need of the people (Alexander et al., 2015; 

Foley et al., 2011; Wood et al., 2004; UNEP, 2002b). The demand of energy in terms of 

fuel resources also increases causing the trend in land-use patterns to change (Strapasson et 

al., 2016; Lambin and Meyfroidt, 2011; Schröter et al., 2005). A study by Addo et al. 

(2014) reported on the change of cropping in the northern region of Ghana to jatropha 

curcas to meet some bioenergy demand of the world. This was seen as a threat to food 

security as most of the arable lands were being used to produce Jatropha for biofuel 

production.  
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Mining was another major driver of land-use change in the basin (Ansa-Asare et al., 2014; 

Murphy and Kapelle, 2014; WRC, 2012). Both legal and illegal mining has attracted 

workers from the nation and around the world. The foreigners come with a variety of 

dietary needs which demand change in land use to meet the dietary needs (Strapasson et 

al., 2016; Alexander et al., 2015). Mining activities increase the economic capacity of 

dwellers and influence their dietary choices (Weinzettel et al., 2013; Tilman et al., 2011). 

Globally, population has been found to be the largest driver of agriculture land use change 

followed by dietary changes (Strapasson et al., 2016). 

The international market and direct foreign investments are other drivers of land-use 

change (Alexander et al., 2015; Knickel, 2012). The Pra basin is dominated by cash crops 

especially cocoa. The demands of the foreign market directly affect what is being 

produced. A shift in international trade on these crops may definitely change the current 

land use (Strapasson et al., 2016). Knickel (2012) reported that between 2 % ï 20 % of 

land in sub-Saharan Africa has been leased to produce food to meet the growing demand in 

Asia and some Arab countries. Policy interventions, especially in the area of development 

projects, are also drivers of change in land use (Knickel, 2012; Wood et al., 2004). An 

example is the proposed hydro-energy dam on the Pra River (Kabo-Bah et al., 2016; WRC, 

2012). Policies changed the production pattern in Europe in the 1980s to early 1990s 

(Knickel, 2012).  

Land tenure systems are also driving changes in land use in the Pra basin. Land systems 

have been found to be a major driver in West African countries (Wood et al., 2004). The 

land tenure systems in the Pra basin does not allow the leasing of farming lands due to the 

fear that inheritance might be lost along the line. This restricts the use of land according to 

the conditions of the owners since lands in the Pra basin are owned by families under the 

custodian of traditional rulers (Yeboah and Shaw, 2013). Climate change is another driver 

that cannot be ignored. The erratic patterns of rainfall in the tropics has a major impact on 

food production since agriculture in sub-Saharan Africa is majorly rainfed (WFN, 2018; 

Knickel, 2012; FAO, 2011). Nutrient absorption by crops will be affected by the limited 

availability of moisture in the soil resulting from changing rainfall patterns and increasing 

temperature trends (Amisigo et al., 2015; Obuobie et al., 2012). Climate change will 

impact crop yields, forcing the changes in types of crops to be cultivated and at which 

location to maximise yield (Strapasson et al., 2016).  
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Droughts, topography and bush fires are other biophysical factors that might drive changes 

in land use in the Pra River Basin (Gessesse and Bewket, 2014; Lambin, et al., 2003). 

Therefore, the dynamics of land use in the basin is a complex interaction of factors such as 

biophysical, economic, political and social with technology as a contemporary major 

player.  

2.1.4.2 Land-use change assessment procedures  

Mono-temporal classification is widely used in literature (Kadeba et al., 2015; Ouedraogo 

et al., 2014; Houessou et al., 2013; Schulz et al., 2010) for land use classification. Despite 

the fact that processing of single date image is faster as compared to multi-temporal 

classification, the vast area covered by basins in Ghana will mean that multi-temporal 

classification will be the most appropriate to use in this study (Zoungrana et al., 2015).  

Ground control points (GCP) taken with a hand-held Global Positioning System (GPS) 

device for supervised classification of satellite images is scientifically accepted as an 

approach that reduces errors in land use classification. In addition to the in-situ collected 

points, high-resolution images (ALOS, ASTER, Quickbird and Google Earth) could be 

used to train and validate the image before going to the field. Similarly, LULC maps of the 

location may serve the same purpose if the accuracy is acceptable (Congalton and Green, 

2008). Landsat images are preferred for land use assessment due to its spatial resolution 

(Braimoh and Vlek, 2005). Post-classification change detection algorithm is the most 

common approach used for monitoring land cover changes since it provides more useful 

information on the initial and final land cover types in a complete matrix of change 

direction (Shalaby and Tateishi, 2007; Fan et al., 2007; Campbell, 2002). In addition, it 

goes beyond simple change detection by quantifying the different magnitude and rates of 

changes described by Aldwaik and Pontius (2012) in terms of intensities. The concept of 

intensity analysis after the post-classification will unravel in detail the behaviour of each 

land class in the assessed period as required for future planning and recommendations in 

this study. 

  

2.1.5 Hydrological ecosystem service modelling  

The availability of accurate data is fundamental for developing efficient policies to 

improve water resources availability and accessibility (Nangia et al., 2010). The often 
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expensive, complex and time-consuming nature of data collection makes modelling the 

best option to monitor and evaluate large scale assessment such as in watersheds and river 

basins (Kusimi et al., 2015). Application of models to areas that especially have inadequate 

data provides valuable information for adaptation and management planning (Khanchoul et 

al., 2010). 

Vigerstol and Aukema (2011) report two types of tools for freshwater assessment. They are 

hydrologic tools (such as the Soil and Water Assessment Tool [SWAT]) and Ecosystem 

service tools (e.g. Integrated Valuation Ecosystem Services and Trade-offs [InVEST] 

model). Hydrological tools have been found to provide a higher degree of detail and 

mostly focus on ecosystem service drivers whereas the ecosystem service tools provide a 

more general picture of ecosystem services and are more accessible to non-experts. 

Ecosystem service tools, such as InVEST, are designed to be relatively easy to apply, to 

facilitate trade-off quantification between multiple services (Bagstad et al., 2013a). 

Lumping the quantification of these services together could reduce the efficiency, 

therefore, the use of specific models to assess specific services based on discipline is more 

appropriate and has proven to give good results. For instance, the Soil and Water 

Assessment Tool (SWAT model) by Arnold and Fohrer (2005), the Variable Infiltration 

Capacity Model (VIC model) by Nijssen et al. (1997) and the Hydrologic Engineering 

Centerôs River Analysis System (HEC-RAS model) by (Brunner, 2010) were developed 

for specific hydrological service assessment. Also, the development of the USGS Land 

Carbon project focused on carbon modelling (Zhu et al., 2010). These models are data-

driven by their efficiency affected by inadequate data. However, ecosystem service 

tools/models are still efficient even with limited data.  Simple deterministic models such as 

InVEST and ARIES are more appropriate in such areas where data availability is scarce 

(Vigerstol and Aukema, 2011). Both models predict changes resulting largely from 

reduced infiltration which is an undesirable change in the groundwater system. 

Understanding of how ecosystem service models operate will help its adoption in different 

locations across the globe (Bagstad et al., 2013b). 

2.1.6 Conceptual overview of the InVEST models  

The InVEST model simplifies water movement by combining the movement of 

groundwater and surface water. It is assumed that groundwater and surface water follows 

the same flow path to reach a stream where it is eventually discharged as baseflow. 
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Mendoza et al. (2011) used InVEST to test water yield in groundwater-dominated systems 

and the results were acceptable and can be calibrated to time-series streamflow data. 

Environmental problems, such as erosion, water quality depletion, declining aquatic 

habitat, and reduced groundwater recharge stern from faster runoff which is an undesirable 

effect of modelling these impacts. InVEST uses published production function information 

encoded within deterministic models to run its data. Although ecosystem service flows are 

accounted for in some models such as hydrology and viewsheds, service provisions such as 

use and flows are not systematically presented by the results (Bagstad et al., 2013a; Syrbe 

and Walz, 2012).  

The current generation of InVEST models does not address uncertainty. Due to that, 

Kareiva et al. (2011) recommend the use of ecological coefficients ranged values to 

parameterise the InVEST models. Ideally, such sensitivity analyses would explore and 

account for potential parameter correlations (Elston, 1992). InVESTôs Tier1 models are 

feasible for use by resource managers and gave adequate supporting data, GIS software 

licenses, and a moderate level of GIS expertise. Assembling the needed spatial data and 

parameterising the underlying data tables can be time-consuming and risks error if done 

poorly. However, when it is finally done for any area, it requires no more parameterisation 

for other works. Getting the underlying data is the largest obstacle to the widespread 

adoption of the InVEST model.  

Although InVEST and ARIES simplified groundwater-system to such a degree that results 

are difficult to precisely interpret, Bagstad et al. (2013b) discovered groundwater flows 

from these two models were consistent with field studies and disciplinary hydrologic 

models verifying the efficiency of the model on ecosystems services.  

2.1.6.1 Overview of Nutrient Delivery Ratio (NDR) model 

The NDR model describes the transportation of nutrient on the basis of mass balance. It is 

based on the empirical relationship of nutrient uninterrupted flow for a long period in space 

(Sharp et al., 2016). Sources of nutrient across the landscape are known as nutrient loads in 

the model. Nutrients loads for the model is determined from the land use maps created for 

the specific study location. The model divides the nutrient flow into surface and 

subsurface. By design, the user is at liberty to model both surface and subsurface or only 

one of them. Secondly, the model computes delivery factors for each pixel based on that 

pixelôs properties in the same generated flow path (Fig. 2.1). The slope and retention 
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efficiency of the land use in question is usually used for the pixel characterisation. The 

output is the computed sum of the pixel-level contributions in the watershed or sub-

watershed arriving at the outlet.  

Limitations of NDR Model 

The outputs of the model are invariably affected by the sensitivity of the limited inputs 

data. It implies that errors in the empirical load parameter values will largely affect the 

predictions. The averaged values used in empirical studies which are the basis for the 

determination of the retention efficiency affects the uncertainty of outputs (Sharp et al., 

2016).  

2.1.6.2 Overview of the Sediment Delivery Ratio (SDR) model 

The SDR model works at the spatial resolution of the input digital elevation model (DEM) 

raster. The amount of eroded sediment is first computed, followed by the sediment delivery 

ratio, which is the proportion of actual soil loss reaching the catchment outlet (Fig. 2.2). 

The sediment delivery ratio (SDR) is calculated on the difference between upslope and 

downslope characteristics for each pixel on the flow path (Sharp et al., 2016). Borselli et 

al. (2008) were the first to work on this method of sediment delivery determination and 

later improved by Sougnez et al. (2011), Lopez-vicente et al. (2013) and Cavalli et al. 

(2013) to the current state used in this study. 

Limitations of the SDR model 

The SDR model was built on the Universal Soil Loss Equation (USLE) which can only 

capture rill or inter-rill erosion processes (Renard et al., 1997). Only gully erosion can be 

added by the user amongst other sediments sources not considered. Therefore, the errors in 

the USLE equations from its empirical parameters affect the estimation of SDR. The model 

allows for parameterization with site-specific information such as erositivity, erodibility, 

crop management and practices factors (Sougnez et al., 2011).  Furthermore, the model 

does not differentiate the sources of sediments in the total delivery in the total sediment 

budget. Also, the explanation given by the literature on SDR model should be considered 

when users are interpreting model absolute values. Inputs parameters significantly 

influence the results generated by SDR due to its simplicity and the low number of 

parameters required to run it. Sensitivity analyses are recommended by developers of the 

model during adoption for appropriate conclusions (Sharp et al., 2016).  
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Fig. 2.1. Conceptual representation of the NDR model 

 (Source: Sharp et al., 2016) 

 

Fig. 2.2. Conceptual approach used in the SDR model 

(Source: Sharp et al., 2016) 
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2.3.5.3 Seasonal water yield model 

Understanding the effect of landscape management on seasonal water flow is of critical 

importance to watershed management. Environmental factors like climate, soil, vegetation, 

slope, and position along the flow path affect the contribution of a landscape to 

streamflow. Water flowing across the landscape is either evaporated, transpired, withdrawn 

by a well, or leaves the watershed as deep groundwater flow or streamflow. Two 

approaches are considered under water yield in an individual pixel.  The first give credit to 

the net amount of water generated in a pixel to be equal to the incoming precipitation 

minus the losses to evapotranspiration in that pixel (Fig. 2.3). Actual evapotranspiration 

can be greater than precipitation in this scheme if the water is supplied to the site from 

upgradient. If that happens, the net generation in the watershed could be negative. Its 

limitation is that evaporated or withdrawn water along the flow path is not considered. 

Besides, it does not differentiate the water yield either as streamflow or from another 

source. The second approach gives credit to the water from a parcel that shows up as 

streamflow (Fig. 2.4). That is evaporated water is considered to be zero when generating 

flow for a parcel of land (Sharp et al., 2016).   

The first approach of the seasonal water yield model emphasises the land-use and land-

cover of a site since the focus is on net generation from that pixel or parcel of land (Fig. 

2.4). The model accounts for the subsidy of water from upslope pixels but does not 

consider downgradient effects. It represents a potential to generate streamflow but not an 

actual generation of flow. The topographic position of a pixel is emphasised more in the 

second approach as that determines the potential for water generated on that pixel to be 

consumed before becoming streamflow (Fig. 2.4). 

The generated water in the second approach represents the actual streamflow generated by 

a pixel. Since actual streamflow cannot be less than zero, this approach, unlike the first, 

will result in indices that are greater than or equal to zero. These concepts were used to 

develop a set of three indices, one for quick flow, one for recharge (which represents the 

ópotential baseflowô), and one for actual baseflow. The baseflow was defined as the 

generation of streamflow with watershed residence times of months to years, while quick 

flow represents the generation of streamflow with watershed residence times of hours to 

days. Therefore, water yield is more of surface flow than accounted for sub-surface flow 

and deep percolation. 
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Fig. 2.3. Water balance at the pixel scale to compute the local recharge 

(Source: Sharp et al., 2016) 

 

 

Fig. 2.4. Routing at the hillslope scale to compute actual evapotranspiration 

Note: based on pixelôs climate variables and the upslope contribution and baseflow (based 

on B: sub: ósumô, the flow actually reaching the stream)  

(Source: Sharp et al., 2016).  
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2.1.7 Approach for a household survey  

An informal interview has remained one of the effective methods to obtain information 

from targeted respondents before a survey questionnaire is designed. A checklist is another 

method from literature (Ikpa et al., 2009; Geist and Lambin, 2002) to know what 

information to concentrate on. Participatory Rural Approaches, namely: focus group 

discussions, semi-structured interviews and direct observations are methods for collecting 

qualitative data. A checklist is sometimes used to guide focused group discussions to 

obtain information from respondents. These informations are most at times the basis for 

questionnaires designed for further interviews (Dimobe et al., 2015; Damnyag et al., 

2013). Both random and purposive sampling techniques are acceptable for climate and 

land-use change studies which could be driven by specific factors like age when assessing 

climate change. A respondent should be well knowledgeable and fully engaged in for 

example farming for 20 ï 30 years to be able to give an accurate observation of climate 

impact on farming. The Statistical Package for Social Sciences (SPSSs), an IBM statistical 

software, is very useful in the analysis of data from the survey. Some analyses carried out 

are tests of normality, t-tests, ranking and Chi-square (Kruskal Wallis H) tests for 

validation of the significance of the association among data collected. Both logit and probit 

model of regression can be used on data to determine significant factors influencing 

decisions or conditions being assessed. Logit is mostly preferred to probit model since the 

logit model is more interpretable (Dimobe et al., 2015; Houessou et al., 2013; Long, 1997).  

 

2.2 Theoretical Framework 

The ensembling of both dynamical and statistical climate models in this study was based 

on the theory of statistical mechanics and the dynamical system theory. Statistical 

mechanics first reported by Jaynes (1957) combines physical laws on microscopic 

particles, statistical methods and probability theory to downscale atmospheric variables to 

a mean state of local relevance. Stochastic methods for downscaling is based on this theory 

because is able to capture errors of models, quantify uncertainties in predictions and 

ensemble simulations (Frankze et al., 2014). The limitation is that extremes conditions 

including atmospheric circulations (Shepherd, 2014) are not captured by stochastic 

methods under the statistical mechanicsô theory which is accounted for in the dynamical 

system theory. 
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Dynamical system theory uses differential equations to represent complex systems. Small-

scale processes are parameterized in dynamical models for even representation of the earth 

system (Dijkstra, 2016). Therefore, the combination of models from both theories in 

accessing future climate impact could complement the deficiencies in each of the theories 

thereby reducing model biases (Benjamin and Budescu, 2018; Baumberger et al., 2017; 

Frankze et al., 2014). 

The Theory of Change was the bases of validating climate change from farmersô 

perception survey. The logic model and long-term outcomes elements of the theory based 

on the definition of Weiss (1995) applied in this study. The principle of how climate 

change is seen and why changes are being made by farmers to adapt to the impact of 

climate change. The theory of change has been used to investigate the social inclusion of 

resilience to climate change (Forsyth, 2018).  

 

2.3 Literature Review 

2.3.1 Climate change and water resources 

Climate change is expected to result in erratic rainfall in the tropics (IPCC, 2007). Studies 

show that it has decreased rainfall, runoff and river flow in the Mediterranean area (López-

Moreno et al., 2011; Milly et al., 2005). Previous studies on river basins show that climate 

change may impact ecosystem services delivery especially during dry conditions (Terrado 

et al., 2014). Hence, the application of future climate change prediction (rainfall and 

temperature) are essential to identify and determine the possible impacts on ecosystem 

services provision and regulation (Terrado et al., 2014; Bangash et al., 2013). The gap was 

the use of the same spatial resolution of different models or different spatial resolution of 

the same model in previous climate change impact studies. Boon and Ahenkan (2012) 

assessed the impact of climate change on livelihood in Sui Forest Reserve in Ghana and 

concluded that the principal livelihood sources affected by climate change impacts are 

agriculture, forest resources and water resources. Using different climate models at 

different spatial resolutions could reduce the uncertainty of climate projection and improve 

resilience through specific adaptation strategies. 

Obuobie et al. (2012) analysed an ensemble of RCMs from Ghana Meteorological Agency 

(GMet) and reported that ECHAM4/CSIRO models jointly projected hotter and dryer 
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climate conditions in 2020 and 2050 for the Volta and Pra basins in Ghana. The mean daily 

temperature in the White Volta and Pra basins are expected to increase by 0.6 and 0.5oC, 

respectively, in 2020 relative to the baseline values from 1961 to 1990. There was also 

1.9oC increase projection for temperature in both basins for 2050. Precipitation was also 

projected to decrease in 2020 by 12.3 % and 17.8 % and in 2050 by 19.6 % and 25.9 % in 

the White Volta and Pra basins respectively. Currently, Ghana has more than 2000 m3 of 

water available to a person (Amisigo et al., 2015). Similarly, the effect of these projections 

on the water is expected to worsen water stress conditions from 1,160 m3/p/y to 529 m3 by 

2020 and 165 m3 by 2050. Moreover, annual freshwater availability per capita may reduce 

to water scarcity (681 m3 per capita per year) by 2020 and absolute scarcity (306 m3/p/y) 

by 2050. Therefore, population growth and climate change threaten water availability in 

both 2020 and 2050. Amisigo et al. (2015) worked in the Pra basin of Ghana and projected 

ī25.9 % and +60.9 % change in catchment runoff for Ghana dry and Ghana wet scenarios 

respectively whereas the global scenario simulations projected ī12.2 % and ī34.4 % for 

dry and wet conditions respectively for the period 2011 - 2050. These two studies used 

limited number of RCMs and all at spatial resolutions of about 50 km for their impact 

studies. There is the need to assess the impact of climate change with adequate climate 

data, using regional climate models to get more consistent scenarios at high resolutions to 

support decision making in the south-western coastal basins of Ghana. 

  

2.3.2 Land use competition for water supply under changing climate 

Boulton et al. (2014), for example, assessed the case of European settlements in Australia 

and found out that changes to land use and land cover in the area affected the ecological 

health of Australian freshwater ecosystems. Some of the impact of LULC change on 

freshwater ecosystems are changes in environmental flow and limited water supply for 

human consumption (Davis et al., 2015). Environmental flows are defined as ñthe quantity, 

quality and timing of water flow required to sustain freshwater and estuarine ecosystems 

including human livelihoods and well-being that depend on these ecosystemsò (IRF, 2018). 

Knowledge on how water is distributed and the spatial arrangements of a possible 

modification to the pattern of water abstraction is necessary to receive enough flow in 

streams and rivers on a preferential basis. Timing as a service delivery determines how 

beneficial modest flow at the right time of the year affects ecological outcomes and protect 



30  

 

individual species until when there is water stress (Bond et al., 2008).  Conservation 

policies that support freshwater protection sometimes exclude social, economic and 

cultural values of water which are very essential to indigenous people. Therefore, 

indigenous knowledge needs to be incorporated in natural resources decision-making for a 

better understanding of the process to improve water management (Dale et al., 2013; 

Ryder et al., 2010; Fazey et al., 2006). Changes in land-use also impact significantly on 

groundwater recharge (Crosbie et al., 2010). Land clearing for agriculture production 

diverts freshwater meant for immediate human needs. Meeting human needs, therefore, 

interfere with natural flows. An urgent response in land change management is required to 

avoid the multiple losses of ecosystem services (Davis et al., 2015).  

In China, for example, Zhang et al. (2016) conducted research on the impact of land use 

and climate changes on hydrological ecosystem services (water supply) in the dryland area 

of the middle reaches of the Yellow River to identify innovative strategies for water-

efficient land management to improve water quantity for secure water supply. The study 

showed that vegetation restoration efforts such as trees and grass planting are effective in 

controlling soil erosion on the Loess Plateau. Changes in land cover/use modify physical 

properties of the soil. However, the effect of vegetation restoration (land-use change) on 

hydraulic properties remains to be researched. He used streamflow, precipitation, potential 

evapotranspiration and climatic water balance as parameters for the investigation. 

Knowledge about base flow formation on catchment-scale was found to be inadequate and 

therefore needs further improvement. Ecosystem services including hydrological service in 

a water-scarce zone/environment, need to be balanced with minimum tradeoffs (Zhang et 

al., 2016). Soil erosion is a major factor of soil nutrient depletion via runoff leading to 

water quality degradation (Kusimi et al., 2015). Studies have shown that soil erosion has 

degraded about 38 % of the global agricultural land with high records of 45 %, 65 % and 

74 % in South America, Africa and Central America respectively (Arekhi, 2008). 

Sedimentation impacts are mostly felt in reservoirs/dams where their water-holding 

capacities are reduced (Akuffo, 2003).  

In Africa, carbon sequestration could be improved through the conservation of forest and 

its resource. However, human activities such as agricultural expansion and tree harvesting 

constrain this mitigation potential in Africa (Dimobe et al., 2015). Therefore, 

understanding the extent of vegetation cover change is important to support policies that 

focus on stopping or reducing the rate of deforestation. Bai et al. (2008) define land 
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degradation as the long-term loss of ecosystem function and productivity caused by 

disturbances from which the land cannot recover unaided and it occurs slowly with 

cumulative long-lasting impacts (Muchena, 2008) on humans. Land use/cover changes 

have profound impacts on carbon storage, water cycle regulation and other ecosystem 

functions (MEA, 2005). It is therefore important to understand how these changes occur, 

and the underlying driving factors influencing the change. The global environment 

including climate from the local to the global scale and its biodiversity are affected by 

changes in LULC (Sala et al., 2000; Lambin, 1997) thereby resulting in a decline of 

ecosystem services and function as well as land degradation (Vitousek et al., 2008). 

Therefore, monitoring LULC change is relevant to sustainable landscape and 

environmental management. A regular map update is recommended for West Africa to aid 

the estimation of LULC change (Dimobe et al., 2015).  

2.3.2.1 The role of a buffer  in hydrological ecosystem service delivery 

An integral part of water management at the basin scale is the maintenance of riparian 

buffer strips in the landscapes (Enanga et al., 2011; Sweeney and Blaine, 2007; Decker, 

2003). However, the increased food production to meet the increasing human population 

makes it difficult to control the buffer zone encroachment, especially in peri-urban farming 

communities. Riparian buffer strips regulate nutrients from agriculture lands that runoff 

into streams (Kibichii et al., 2007). The size of a riparian buffer has been found to 

influence its capacity to control the intrusion of harmful chemicals from adjacent land uses 

into streams (Enanga et al., 2011; Cooper et al., 1995). There is, therefore, the need to 

determine or estimate the effective buffer strips for each watershed or basin since land-use 

activities and soil types vary across nations. It will  also enrich policy with scientific 

evidence. Land use, therefore, impacts water resources both at the level of change in 

vegetation and the activities of humans in the soil. 

2.3.2.2 Impact of land use/cover change 

The widespread catchment erosion and subsequent river sedimentation, water shortage, 

pollution, and other physicochemical deterioration resulting from human activities impact 

both immediate and distant areas affected by deforestation. Ellis and Pontius (2007) 

reported that the impacts of land-use changes on river catchments could be very 

devastating, and could result in loss of biodiversity through habitat loss, habitat 
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fragmentation, and edge effect irrespective of the causes of land-use change. Soil erosion 

negatively affects soil fertility. This makes the regular monitoring of land-use change and 

sediments yield in a catchment or basin key to the formulation of policies and strategies to 

protect hydrological ecosystem services. The effect of land-use change on freshwater 

ecosystem services in Ghana is not different from other nations (Martin-Ortega et al., 

2015; Ayivor and Gordon, 2012). 

  

2.3.3 Modelling water availability  and quality  under climate change  

Ecosystem service valuation has been a subject of academic interest for a while. Currently, 

its evaluation informs policymaking at all levels (Daily et al., 2009; Ruhl et al., 2007). 

Various aspects of the service such as ecology, economics, and geography have been 

integrated into software as decision support tools for management and conservation 

(Vigerstol and Aukema, 2011). Ecosystem mapping tools support decision making by the 

provision of easy to interpret results and findings that can be easily related with in terms of 

value. Bagstad et al. (2013b) reported that landscape-scale urban growth scenarios were 

more closely aligned for the two models (InVEST and ARIES) whereas site-scale mesquite 

management scenarios were more divergent. They recommended follow-up studies, which 

could test the models in different geographic contexts to improve understanding of the 

strengths and weaknesses of the models and enhance their readiness as a day-to-day 

resource management-supporting tool.  

Land use and land cover changes and their management affect both water flow and erosion 

regulation at the basin scale (Schmalz et al., 2016; Frank et al., 2014). A gap identified by 

Schmalz et al. (2016) was the relationship of land-use change impacts on human well-

being which occurs on different spatial and temporal scales, which need to be understood 

when new management strategies are defined. Their study was a reasonable approach to 

provide spatiotemporal patterns of different river basins which can be used by stakeholders 

for further discussion and planning of sustainable land management. Kasei (2009) used the 

WaSiM-ETH (Water Balance Simulation modelïETH) hydrological model in the White 

Volta basin with Pwalugu as north of basin and Bui as south of basin. The findings showed 

that temperature and rainfall were projected to increase by a mean value of 1.2oC and about 

15 % respectively with the regional model MM5 (Meteorological Model version 5). 

However, the IPCC Scenarios A1B and B1 (Fenech et al., 2007) simulated in WaSiM by 
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German Regional Climate model (REMO) projected temperature to increase by 1oC and 3 

% ï 6 % decrease in precipitation. The study was for the period 2001-2050 compared to 

1961-2000 over the Volta basin. This reduced projected total mean discharge by 5 %.  

The demand of water-dependent sectors in Ghana showed that the river basins across the 

nation in their current state were not capable of meeting the demands for agriculture, 

domestic and industrial, and hydropower generation (Amisigo et al., 2015). 

Calibration/validation of models is normally difficult in many SSA countries due to the 

lack of both quality climate data and runoff data (Sharp et al., 2016). Data for basin 

monitoring are very essential in this current advancement in spatial research and 

predictions.   

 

2.3.5 Overview of Ghana and her watersheds and/or basins  

Ghana is located in West Africa between latitude 4.67 to 11.23ºN and longitude 3.38ºW 

and 1.26ºE with a total land area of 238,533 km2 (Fig. 2.1). The Gross Domestic Product 

(GDP) of the country is currently based on service and industry although agriculture 

employs the highest population of the labour force (Bessah and Addo, 2013). The country 

is covered by 27 basins (Fig. 2.1) grouped into three major surface water flows or 

resources, namely; the Volta river system, the Southwestern river system and the Coastal 

river system (GoG, 2007; AQUASTAT Survey, 2005). The total renewable water flows in 

Ghana is 53.2 trillion m3/y. About 57 % of the renewable water resources are internal 

while 43 % are contributions from outside the country (Margat, 2001). The Volta river 

system, Southwestern river system and Coastal river system covers 70 %, 22 % and 8 % of 

land surface respectively (WRC, 2012). 
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Fig. 2.5. River basins in Ghana 

 (Source: digital version of basin delineation prepared from the Geodatabase of the 

Department of Geological Survey, Ghana) 
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CHAPTER THREE  

METHODOLOGY  

3.1 Study area 

3.1.1 Location and area 

The Pra River Basin is located between latitudes 4o58  N and 7o11  N and longitudes 0o25  

W and 2o13  W, covering an area of 23,321 km2 crossing four regions in Ghana, namely; 

Ashanti, Eastern, Central and Western (Fig. 3.1). It is located south to the Volta River 

Basin in Ghana. The basin has the densest population in Ghana with more than 1300 towns 

located in it (WRC, 2012). Kumasi, the capital of the Ashanti region is the main place most 

of the migrants from Northern Ghana relocate to because of its position (central) to the 

southern part of Ghana. The mineral deposits spread across the basin has attracted both 

large scale and small-scale mining companies and activities. Majority of the small-scale 

mining, locally known as ñgalamseyò are operating illegally and has attracted migrants 

from all over the nation and from neighbouring nations into the area.  

3.1.2 Climate 

Pra River Basin experience two rainfall seasons (bi-modal: major and minor) annually 

under the wet semi-equatorial climatic belt. The major rainfall is normally from March to 

July and the minor starts in September and ends in October (Dickson and Benneh, 1995). 

The long dry season over the basin is between November and March. The basin is mainly 

under the semi-deciduous agro-ecological zone and therefore benefits from the moist 

south-west monsoon (Fig. 3.2). Annual rainfall amount ranges between 1250 and 2000 mm 

and with a relative humidity between 60 % and 95 % (Akrasi and Ansa-Asare, 2008). The 

annual mean minimum and maximum temperatures are 21°C and 32°C respectively.  

3.1.3 Vegetation 

The Pra Basin is habitat to most of the valuable timbers trees in Ghana within its moist-

semi deciduous forest (Fig. 3.2). The climate is suitable for rapid vegetation development 

especially the bi-modal rainfall pattern that ensures moist in the soil in most part of the 

year. The mean height of timber trees ranges from 35 - 45 m (Dickson and Benneh, 1995). 

Most of Ghanaôs valuable timber trees like African mahogany (Khaya ivorensis), Ceiba 

(Ceiba pentandra) and Emeri (Terminalia ivorensis) can be found in the basin. The 



36  

 

vegetation comprises of climbers, shrubs/bushes, lianas and trees which protect the soil and 

provide the service of erosion control  

However, in the dry season, certain tree species shed their leaves during the long dry spell 

(Kusimi et al., 2015; WRC, 2012; Dickson and Benneh, 1995). Land use activities within 

the basin are very intense. Only a little of the original forest remains in the basin due to the 

rapid expansion of cocoa and cash crops industries (Kusimi et al., 2015; Dickson and 

Benneh, 1995). The basin contains most of the large cocoa growing areas in the Eastern, 

Ashanti, and Central Regions. Cocoa followed by oil palm are the major tree crops 

cultivated in the basin. Commercialised farming is gradually growing in the area and is 

currently the leading producer of tuber crops in Ghana (Kusimi et al., 2015; Nutsukpo et 

al., 2013).  

3.1.4 Hydrology  

The mean annual discharge rate of the Pra River was 214 m3s-1 (Akrasi and Ansa-Asare, 

2008) and flows to the Gulf of Guinea at Shama town in Western Region. Pra River Basin 

has the largest area coverage within the South Western drainage in the nation (Kusimi et 

al., 2015). Three regional capitals namely; Kumasi in the Ashanti region, Cape Coast in the 

Central region and Sekondi-Takoradi in the Western region (Fig. 3.1) source their 

municipal water from the basin for both domestic and commercial purposes (WRC, 2012).  
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Fig. 3.1. A detailed map of the Pra River Basin 

 

 

Fig. 3.2. (a) Agro-ecological map and (b) soil map of the Pra River Basin 
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3.2 Climate variability and change analysis 

Variability and change were assessed within and between observed and future respectively.  

3.2.1 Datasets for climate analysis 

The dataset were the gauge stations and the model output temperature and rainfall data. 

3.2.1.1 Meteorological data 

Historical climate data from seven climate stations with most recent operation date in 1972 

(Akim Oda) and earliest operation date in 1912 (Kibi) for the Pra River basin were 

acquired from the Ghana Meteorological Agency (GMet) (Fig. 3.3). The parameters 

considered were temperature (maximum, minimum and mean) and rainfall. Solar radiation, 

wind speed and relative humidity for the two synoptic stations (Akim Oda and Kumasi) 

were also acquired for the determination of evapotranspiration for the basin. The data 

period was between the years of 1975 and 2010. A thirty yearsô minimum reference period 

of 1980 ï 2010 was used to evaluate the performance of the climate models (Arguez et al., 

2012; Fenech et al., 2007) due to acceptable missing data range for rainfall and 

temperature. Climate stations that had missing data in rainfall for the reference period were 

Atieku (2.5 %), Konongo (0.8 %), Dunkwa (1.1 %), Kibi (14.2 %) and Twifo Praso (4.7 

%). Kumasi and Akim Oda had no missing data on rainfall. Kumasi, Konongo and Akim 

Oda and Dunkwa had less than 5 % missing data for mean temperature whereas Twifo 

Praso, Kibi and Atieku stations were between 15 ï 50 %. The historical analysis for the 

basin was done for the period 1981 ï 2010 and projection was limited to near future from 

2020 ï 2049 (30 years as required in climate analysis). 

3.2.1.2 Assessed Global Circulation Models and Regional Climate Models  

Global circulation models outputs for the assessment of global climate change impact in 

the basin was done with the 43 GCMs of the fifth Assessment Report, AR5 (IPCC, 2014) 

from the climate database of the University of Prince Edward Island (UPEI) (UPEI, 2017). 

Four regional climate models (RCMs) were used in this study (Table 3.1). The two RCMs 

from the Rossby Centre Regional Atmospheric model (RCA4) from the Coordinated 

Regional Climate Downscaling Experiment (CORDEX) project at 44 km spatial resolution 

for this study were; the second generation Canadian Earth System Model (CanESM2) and 

the mid-resolution model Climate Model (CM5A-MR) (full description in Table 3.1).  
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Fig. 3.3. Map of study area showing climate stations 
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Table 3.1. Description of the four regional climate models used 

Model 

acronym  

Model Name Originating 

group 

Country Adopted 

Acronym 

RCM Resolution 

GFDL-

ESM2M  

Second Generation 

Earth System 

Model  

NOAA 

Geophysical Fluid 

Dynamics 

Laboratory 

USA  GFDL WRF 12 km 

HadGEM2-

ES  

Second Generation 

Earth System 

Model  

Hadley Centre for 

Climate Prediction 

and Research 

UK Hadgem WRF 12 km 

IPSL-

CM5A-MR 

Mid-resolution 

model (1.25° x 

2.5°) Earth System 

Model 

Institut Pierre 

Simon Laplace 

France IPSL SMHI-

RCA4 

44 km 

CCCma-

CanESM2 

Second Generation 

Canadian Earth 

System Model 

Canadian Centre 

for Climate 

Modeling and 

Analysis 

Canada CanESM SMHI-

RCA4 

44 km 
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The mean temperature (tas) and rainfall (pr) of the selected models for both historical 

simulation and projections were downloaded from the CORDEX website (IS-ENES, 

2017). The Representative Concentration Pathways (RCP) 4.5 simulations from 2006 ï 

2010 was added to the historical simulation of the CORDEX RCMs dataset to complete the 

30-year period from 1981 ï 2010 (Dosio and Panitz, 2016). 

The Weather Research and Forecasting (WRF) RCM at 12 km spatial resolution generated 

the two remaining regional climate models. They were the General Fluid Dynamics 

Laboratory Earth System Model (GFDL-ESM2M) and the Hadley Global Environment 

Model (HadGEM2-ES) (Table 3.1). Both were obtained from the West African Science 

Service Centre on Climate Change and Adapted Land Use (WASCAL) geoportal for the 

same parameters (mean temperature [tas] and rainfall [pr]). The historical simulation of the 

WRF data was from 1980 ï 2009 and the future period was 2020 ï 2049 (Heinzeller et al., 

2016a, 2016b, 2016c, 2016d). The links to data sources of the models are presented in 

Appendix I. Due to the focus of this study, only the near future (2020 -2049) data were 

acquired. All analysis of the WRF model in the study were based on the reference period 

1980 ï 2009 for all stations. The historical simulation also ended in 2005, therefore 2006 ï 

2009 RCP4.5 projections were included (Dosio and Panitz, 2016). 

The Representative Concentration Pathways (RCP) 4.5. was chosen for this study because 

it represents the mitigation option of the emission scenarios which United Nation 

Framework Convention on Climate Change (UNFCCC) through Kyoto protocol and Paris 

agreement are aiming to attain globally (Muthee et al., 2018; Lomborg, 2016 van Vuuren 

et al., 2011 Cubasch et al., 2013; Clarke et al., 2007).). The Sahel and tropical West Africa 

were also found to be hotspots of climate change under both RCP4.5 and RCP8.5 pathways 

projected to occur by late 2030s to early 2040s (Mora et al., 2013; Diffenbaugh and Giorgi, 

2012).  

The model names GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-MR, and CCCma-

CanESM2 are referred to hereafter as GFDL, Hadgem, IPSL, and CanESM respectively. 

 

3.2.2 Instruments for climate modelling 

The statistical downscaling model was the main instruments used for the climate analysis 

in modelling the local climate of the basin.  
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3.2.2.1 Statistical downscaling model  

The Statistical Downscaling Model ï Decision Centric (SDSM-DC) version 5.2 developed 

by Wilby and Dawson in December 2015 with a spatial resolution of 2 m (Wilby et al., 

2014; Wilby and Dawson, 2013; Wilby et al., 2002) was adopted for comparative climate 

projections. This was to reduce the uncertainty levels of future climate and increase the 

accuracy of risk and vulnerability assessment in the study area. The predictors for 

calibration and validation of the SDSM-DC were also acquired from the same source. The 

SDSM-DC 5.2 and predictor variables were downloaded freely from Loughborough 

University website hosting SDSM. Observed data from 1981 - 2010 obtained from Ghana 

Meteorological Agency (GMet) were used for calibration and validation of the models at 

the seven climate stations. Each climate variable was prepared in text file format for each 

station to fit into SDSM. Factors for the generation of future climate in SDSM were 

acquired from the ensemble mean of the 43 GCMs from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) on the climate database of the University of 

Prince Edward Island (UPEI, 2017). Mean of ensemble CMIP5 values for 2020s (2011 ï 

2040) and 2050s (2041 ï 2070) were used since the near future period of this study was 

from 2020 ï 2049. The model downscale climate variable of a location or station from the 

large atmospheric variables by combining stochastic weather generator and multiple linear 

regression (Wilby et al., 2002).  SDSM-DC hereinafter was referred to as SDSM.  

 

3.2.3 Climate data analysis 

The analyses of the rainfall and mean temperature outputs of the five climate models 

namely CanESM, IPSL, GFDL, Hadgem and SDSM were carried out following the steps 

presented in Fig. 3.4. Amelia package in R software was used to fill gaps in data for the 

reference period 1981ï2010 to enhance the performance assessment of the models at equal 

conditions of station data (Arguez et al., 2012). Rainfall data were subjected to quality 

control in RClimdex after filling the gaps to identify outliers and erroneous data such as 

negative rainfall values which were then removed (Aguilar et al., 2009). The R software 

(Packages: ncdf.tools, ncdf and raster) was further used to extract RCMs daily rainfall 

using the geographical coordinates of the seven climate stations. 
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Fig. 3.4. Climate variation and change analysis 
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3.2.3.1 GCMs projections over the basin 

An area assessment of temperature and rainfall from CMIP5 models in the Fifth 

Assessment Report (AR5) over the Pra River Basin was done by creating a rectangular 

boundary on the UPEI climate database. The boundary covered an area of 47, 192 km2 

(almost twice the actual area of Pra River Basin because this was a rectangular fit box) 

between latitude 4.94ºN and 7.20ºN and longitude 0.95ºW and 2.65ºW. The National 

Center for Environmental Prediction (NCEP) reanalysis data for the base period 1981 ï 

2010 was used to determine the change in the basin from 2011 ï 2100 under global climate 

change from the AR5 43 GCMs. The method of validation of models using the 1xStdev 

and 2xStdev as zone of acceptable models (Fenech, 2016; Fenech et al., 2007) was 

employed to determine GCMs with good skill of historical simulation of temperature and 

rainfall as the validated projection for the basin. Two of the GCMs with RCMs available 

on CORDEX earlier described (Table 3.1) were acquired from the African domain for this 

study. 

  

3.2.3.2 Bias correction of RCMs  

The bias-correction of simulated precipitation was performed using the linear scaling 

method and double-quantile mapping while temperature was bias-corrected using only 

variance scaling method (Teutschbein and Seibert, 2012; Leander et al., 2008; Lenderink 

et al., 2007). The linear scaling method aims to perfectly match the monthly mean of 

corrected values with that of observed ones (Teutschbein and Seibert, 2012). However, the 

variance in the data is not corrected by the linear scaling method. An effective approach to 

correct both the mean and the variance of temperature is the variance scaling method. The 

variance scaling method adjusts the RCM control run to have the same mean and standard 

deviation (i.e., variance) as the observed time series. The quantile-quantile or double 

quantile mapping ensures the reproduction of Cumulative Distribution Functions (CDFs) if 

the RCM period and the observation period are identical (Bárdossy and Pegram, 2011). 

The QȤQ transformation which creates identical distribution provides a purely statistical 

correction of the RCM results, independent of the weather type based on the test 

distribution created (Bogner et al., 2012). It has been found that empirical estimation of 

CDFs and inverse CDFs from data, helps to illustrate the capacity of the algorithm using a 
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quantile-quantile plot, which is the scatterplot between empirical quantiles of observed and 

modelled data (Ringard et al., 2017; Cannon et al., 2015; Sun et al., 2011). Since bias-

correction was not an objective for this study, only RCMs output that was not within 

acceptable performances under the time-series-based metric were bias-corrected for the 

purpose of producing an ensemble climate output for the basin. 

 

3.2.3.3 Calibration of r ainfall and mean temperature in SDSM  

The best predictors selected for rainfall calibration were direct shortwave radiation, surface 

lifted index, vorticity near the surface, vorticity at 850 hPa and vorticity at 500 hPa, surface 

divergence, precipitable water, total precipitation and relative humidity at 850 hPa and 500 

hPa and near-surface relative humidity. Each station was calibrated with a minimum of 

four of the listed predictors at 95 % confidence level. Rainfall and temperature were 

calibrated as conditional and unconditional models respectively. At the screening stage of 

the variables for calibration, correlation at p < 0.05, followed by scatter plot was used at 

first and second stage to select the minimum number of atmospheric variables from NCEP. 

The predictors that best correlated with mean temperature were surface lifted index, mean 

sea level pressure, geopotential height at 850 hPa, potential temperature, relative humidity 

at 500 hPa height, near-surface specific humidity and mean temperature at 2 m. The 

simulated historical data from 1981 ï 2010 from the model was used in measuring its 

capacity or skill to capture rainfall and mean temperature in the basin. 

  

3.2.3.4 Performance evaluation of climate models  

The performance evaluation of models is based on their abilities to reproduce precipitation 

and temperature of the study area. The performance was evaluated by comparing the 

rainfall and temperature of the models (bias-corrected or not) with observation datasets 

using the frequency-based indices and time-series-based metrics. Coefficient of 

determination, Nash-Sutcliffe efficiency and Root Mean Square Error were the time-series 

based metrics for the performance evaluation of the models, in addition, to mean, median 

and standard deviation frequency-based indices (Moriasi et al., 2007; Klein Tank and 

Können, 2003). 
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3.2.3.5 Standardised Anomaly Index (SAI)  

Standardised Anomaly Index (SAI) was used to investigate annual rainfall anomalies. The 

SAI of rainfall was computed to determine the inter-annual variability of rainfall of both 

the baseline data and the projected rainfall data (Hadgu et al., 2013). The index is a 

descriptor of rainfall variability, and it indicates the deviation of a rainfall event from the 

mean value under consideration. It was further used to determine dry and wet years for 

both the baseline and projected data. Positive and negative values of SAI represent 

precipitation above average, and below-average respectively. The standard classification of 

rainfall anomaly index by van Rooy (1965) presented in Table 3.2 was used in this study. 

The Standardised Anomaly Index (SAI) by Hadgu et al. (2013) was calculated as: 

ὛὃὍ                                                   (3.1) 

Where;  

x is the annual/seasonal precipitation;  

µ is the long-term seasonal mean and  

ů is its standard deviation 

 

3.2.3.6 Onset, cessation and duration of rainfall 

Daily observed and projected rainfall data were used to calculate the onset and cessation 

dates and duration of rainy season or length of the rainy season (LRS) in the study area. 

This was to predict to an extent what should be expected over the location by all who 

depend on rainfall for their activities. The length of the rainy season was the difference 

between the onset and cessation dates. The onset and cessation dates and LRS were 

determined by modifying the Walter-Olaniran method (Matthew et al., 2017) in Microsoft 

Excel 2016. Onset was calculated from the first month of effective rainfall where effective 

rainfall is defined by accumulated rainfall totals equal to or exceeding 50.8 mm (2 inches). 

The formula is:  

ὕὲίὩὸ ὈὥὸὩ ὕὈ
Ȣ

  (3.2) 
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where; 

D = number of days in the first month with effective rain.  

F = accumulated rainfall total of the previous month; 

R = total rainfall in the first month with effective rain.  

Cessation dates were calculated with the same formula but in a backward format from 

December. The month that had accumulated rainfall totals, equal or exceeding 50.8 mm 

then becomes the end of the raining season (Matthew et al., 2017). The Walter-Olaniran 

method is said to perform poorly in the forest zone compared to the Savannah and Sudan-

Sahel. According to Garbutt et al. (1981), the threshold value of rainfall amount required 

for a day to be counted as a rainy day in West Africa is 0.85 mm which might not be the 

same for the forest and coastal zones when considered separately. The modification 

involved a month being selected as onset when rainfall amount in the succeeding months is 

not less than 50.8 mm as developed by Walter-Olaniran method for the months in which 

onset is calculated (Matthew et al., 2017). The same modification was done for the 

determination of the cessation of rainfall.  

Spatial analysis was done in ArcGIS 10.3. The ordinary kriging interpolation method using 

spherical semi-variogram was employed in generating the projected temperature and rate 

of change in rainfall and the graphical presentation of outputs in maps.   
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Table 3.2. Classification of rainfall anomaly index (RAI) 

Rainfall anomaly index Class description 

Ó 3.00  Extremely wet 

2.00 to 2.99 Very wet 

1.00 to 1.99 Moderately wet 

0.50 to 0.99 Slightly wet 

0.49 to -0.49 Near Normal 

-0.50 to -0.99 Slightly dry 

-1.00 to -1.99 Moderately dry 

-2.00 to -2.99 Very dry 

Ò - 3.00  Extremely dry 

(Source: van Rooy, 1965) 
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3.3 Trend of land use/cover changes 

The analysis was done to address the second specific objective of this study.  

3.3.1 Data sources for image processing 

All data for image processing were secondary data except the ground control points. 

3.3.1.1 Landsat Images  

Satellite images that cover the Pra Basin for the years 1986, 2002 and 2018 were acquired 

freely from United States Geological Surveyôs (USGS) Global Visualisation Viewer 

(GLOVIS) based on cloud cover and quality. The spatial resolution of Landsat images used 

was 30 m with a cloud cover criterion of less than 10 %. Table 3.3 shows the dates and 

characteristics of the Landsat images used in this study. The three paths and rows of 

Landsat were taken at Datum WGS84 in Universal Transverse Mercator (UTM) zone 30 

and were already geometrically corrected. 

3.3.1.2 Ground truth and r eference data 

The 1986 images were classified with Google Earth historic image of the same year and 

the land cover shapefile database from the Geological Survey Department of Ghana. The 

globeland30 map for 2000 produced by the Chinese (global land cover map at a spatial 

resolution 30 m) was acquired (Chen et al., 2014) and combined with the land cover 

shapefile database and Google Earth historic image of 2001-2003 to classify the 2002 

Landsat combined images of the basin. The recently released 2016 European Space 

Agency (ESA) Climate Change Initiative (CCI) S2 prototype land cover map at 20 m for 

Africa was acquired from ESA and combined with 150 ground control points collected 

with handheld GPS and Google Earth image of 2018 to classify the 2018 Landsat images 

for the study (Braimoh and Vlek, 2005). 

3.3.2 Image analysis for LULC change assessment 

Image processing and analysis from the acquisition of the images from GLOVIS to the 

intensity analysis followed the chart in Fig. 3.5. Image pre-processing started with 

atmospheric corrections to merging under raster and extraction of the study area from 

image using clipper before the training of site for the classification in R software. Filtering 

and sieving were the main image post-processing carried out. 



50  

 

Table 3.3. Characteristics of Landsat images 

Year Characteristics p193, r056 p194, r055 p194, r056 

 

1986 

Date Acquired 1986-12-22 1986-12-29 1986-12-29 

Spacecraft ID Landsat 5 Landsat 5 Landsat 5 

Sensor ID TM TM TM 

 

2002 

Date Acquired 2002-12-26 2004-02-06 2002-01-15 

Spacecraft ID Landsat 7 Landsat 7 Landsat 7 

Sensor ID ETM ETM ETM 

 

2018 

 

Date Acquired 2018-01-28 2018-01-29 2018-01-03 

Spacecraft ID Landsat 8 Landsat 8 Landsat 8 

Sensor ID OLI TIRS OLI TIRS OLI TIRS 

Basin area coverage (%)  1.20 % 17.5 % 81.3 % 
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Fig. 3.5. Land-use change analysis 
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3.3.2.1 Landsat image classification and accuracy assessment 

Atmospheric correction of all images for the purpose of the temporal analysis was done in 

QGIS 2.18 using the preprocessing tool under Semi-Automatic Classification Plugin 

(SCP). Bands combination 543 and 654 were used to differentiate the various land use 

classes for Landsat 5 & 7 and Landsat 8 satellite images respectively in QGIS (Ololade, 

2012).  Based on the pixel grouping and unsupervised classification records, the unit 

classification were Forest, Arable/Bare lands (cultivated, harvested areas, cleared fields, 

bare areas), Open vegetation (Grassland, shrubs, mixed vegetation), Water (water bodies) 

and Settlement (housings, roads, rural settlement, rock outcrops, etc) as detailed in Table 

3.4 (Mahmoud, 2016). 

Supervised classification was carried out in R software using the random forest algorithm. 

Training site for classification was created in QGIS from ground control points, reference 

maps and knowledge of the study area. Accuracy assessment indicating the level of 

correspondence of classified maps to reality were assessed based on the confusion matrix 

from the random forest algorithm which was set at a maximum of 100 samples for each 

class.  The error matrix technique, which is one of the most widely used methods for 

accuracy assessment was adopted for this purpose (Forkuo and Frimpong, 2012; Braimoh 

and Vlek, 2005). Both the pixel-based and area-based error matrices were done (Olofsson 

et al., 2013). The error of commission (userôs accuracy), errors of omission (producerôs 

accuracy) and overall accuracy were determined. 

  

3.3.2.2 Interval, categorical and transition intensity analysis 

The intensity of change at each of the three levels was assessed with the intensity analysis 

software macros in Microsoft Excel 2016. The post-classification confusion matrix was 

transferred into the model at two intervals (1986 ï 2002 and 2002 ï 2018). The interval 

level determined the period with the highest annual total change in all classes whereas the 

categorical and transitional levels examined the change in each class in relation to the 

uniform annual change per interval and uniform rate of change per category respectively 

(Aldwaik and Pontius, 2012). All changes at interval, categorical and transitional levels 

with intensities higher than uniform rate are termed fast, active and targeted while values 

below uniform intensities are termed as slow, dormant and avoided respectively. 
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Table 3.4. Modified land use/cover classification scheme 

Land use/cover Characteristics 

Forest  Trees usually over 5m tall with crowns interlocking (generally forming 

50-100% cover or more than 150 trees per hectare) 

Open vegetation A complex mixture of grasses and shrubs with or without scattered 

trees with less than 10 trees per hectare. Open stands of trees usually 

over 5m tall with crowns not usually touching (generally forming 25-

60% cover or with approximately 75-150 trees per hectare 

Arable/Bare lands Cultivated areas of diverse characteristics with field 

crops both food and cash crops such as maize, beans etcetera as well as 

harvested fields. Bare lands describe areas that do not have an artificial 

cover as a result of human activities including those areas with less 

than 4% vegetative cover (bare rock areas, sands and deserts). 

Settlement Areas of human settlements, commercial and industrial developments. 

Water Areas permanently covered with standing or moving water. This 

includes inland waters, streams, rivers, lagoon and reservoirs. 

(Source: Mahmoud, 2016; FAO, 1995) 
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3.4 Modelling hydrological ecosystem services with InVEST  

Hydrological modelling followed the framework in Fig. 3.6. Three sub-models of InVEST 

were calibrated based on the spatial parameters prepared in GIS. Digital elevation model 

(DEM) and shapefile of area of interest (watershed) were central to all sub-models. 

Rainfall maps on monthly and annual basis were used for the water yield and nutrient 

delivery ratio models respectively. Rainfall was converted into erosivity by a factor for use 

in the sediment delivery ratio model. Each model made use of both biophysical tables 

(containing physical and biological properties like coefficients of land classes for the 

delivery of a service) and spatially parameterized physical component to generate the 

needed outputs. 

  

3.4.1 Sources of data used in InVEST models 

Climate and land-use data were obtained from the results from objective one and two while 

other data, especially management practices were from literature and reports.  

3.4.1.1 Required data to run the NDR model 

The type of input data, sources and nature for the NDR model are tabulated in Table 3.5. 

All raster inputs were processed in ArcGIS 10.3. The biophysical table was filled with total 

phosphorus and nitrogen data from literature across Africa as provided by the model 

(Sharp et al., 2018). Details on settlement were taken from South Africa (Reckhow et al., 

1980), open vegetation and water from Senegal (Lewis et al., 1999), forest from Ivory 

Coast (Bruijinzeel, 1991) and arable/bare lands from Nigeria, Mauritius and Burkina Faso 

(Lesschen et al., 2007; Kwong et al., 2002; Mackensen and Folster, 2000). Averages were 

determined across the land class to provide single values for the model. The biophysical 

data is presented in Table 3.6. 
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Fig. 3.6. Hydrological ecosystem service modelling in InVEST 
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Table 3.5. Data needs of the NDR model 

 Data Nature/Function Source  

Digital elevation 

model (DEM) 

(required) 

A GIS raster dataset. To ensure proper flow 

routing 

https://urs.earthdata.nasa.gov/ 

Land use/land 

cover (required) 

A GIS raster dataset. The LULC code was 

an integer. 

Generated from Landsat images 

Nutrient 

runoff proxy 

(required) 

A GIS raster dataset. The annual 

precipitation for the basin was used.  

Rainfall data from the study  

Watersheds 

(required) 

A shapefile of polygons Ghana Geological Survey 

Department 

Biophysical 

Table (required) 

land use/land cover classes table in csv 

format, with water quality coefficient.  

Land use maps and empirical 

literature 

Threshold flow 

accumulation 

value 

A stream layer from the DEM Generate from DEM in ArcGIS 

10.3 

Borselli k 

parameter 

The default value is 2. Use default value 

(Source: Prepared by author from Sharp et al., 2016) 
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Table 3.6. Nutrient and phosphorus requirement for NDR model 

LULC Class Load 

n 

Eff 

n 

Load 

p 

Eff 

p 

LULC 

veg 

Crit 

len 

p 

Crit 

len 

n 

Load 

sub n 

Load 

sub p 

Prop 

sub n 

Settlement 4.00 0.05 0.6 0.05 0 150 150 0.49 0.0001 0 

Water 1.3 0.05 0.08 0.05 0 150 150 0.0001 0.0001 0 

Forest 1.8 0.79 3.88 0.79 1 150 150 0.18 0.0011 0 

Open 

vegetation 

1.26 0.52 0.41 0.52 1 150 150 0.37 0.04 0.02 

Arable/Bare 

lands 

16 0.52 0.7 0.3 1 150 150 0.98 0.24 0.25 

* n ï Nitrogen; p - Phosphorus; Eff ï Efficiency; veg ï Vegetation; Crit ï Critical; len ï 

Length; sub ï subsurface; Prop ï Proportion 

(Source: Sharp et al., 2018; Lesschen et al., 2007; Kwong et al., 2002; Mackensen and 

Folster, 2000; Lewis et al., 1999; Bruijinzeel, 1991; Reckhow et al., 1980) 
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3.4.1.2 Data requirement for the SDR model  

The type of input data, sources and nature for the SDR model are presented in Table 3.7. 

All raster inputs were processed in ArcGIS 10.3. Rainfall erosivity values were determined 

based on the modified Fournier index (MFI) method because is suitable for the tropical 

region (Kusimi, 2014; Smithen and Schulze, 1982). Soil erodibility factor (K) were 

adopted from Ashiagbor et al. (2014) which was calculated from the alternative soil 

erodibility factor (ERFAC) from equation 3.3 (Table 3.8). 

The range of the soil erodibility factors was comparable in a decreasing value to the 

findings of Teye-Mensah (1997) for four locations along the coast of Ghana and two in the 

semi-deciduous agro-ecological zone of Ghana. The estimated k-factor from nomograph 

was between 0.33 t/J and 0.48 t/J at Axim and Juaso respectively while the measured k-

factor was between 0.36 t/J and 0.62 t/J at Ho and Juaso respectively (Teye-Mensah, 

1997). However, the findings of Teye-Mensah (1997) was a mixture of soil types per the 

location while the k-factor from the alternative equation in this study was for specific soil 

type (Table 3.8). 

 

ὑ Ὢὥὧὸέὶ πȢσς
Ϸ 

Ϸ Ϸ 
πȢςχ  (3.3) 

 

 

The support practice factor (usle_p) presented in Table 3.9 was assumed as 1 for all the 

five land-use classes because there was no provision for conservation support in the basin 

(Kusimi, 2014). Table 3.9 also present the sources of cover management factors (usle_c) 

averaged for this study. Rainfall erosivity (R) was determined using the interpolation table 

of rainfall (mm) and R factor reported by Elbasit et al. (2013) at a correspondence of 150 

mm rainfall to 400 MJ mm ha-1 h-1 yr-1 erosivity. This was determined to be at r = 0.99 

between Zimbabwe and Ethiopia and r = 0.81, 0.54 and 0.83 for Fournier index (FI), half-

month rainfall erosivity (M i) and monthly rainfall (Pi) formulas respectively. Earlier 

findings by van der Poel (1980) proposed 100 mm to 400 MJ mm ha-1 h-1 yr-1 change in R 

factor.  
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Table 3.7. Data needs of the SDR model 

Data Nature/Function Source  

Digital 

elevation model 

(required) 

Raster dataset from a GIS platform.  https://urs.earthdata.nasa.gov/ 

Rainfall 

erosivity index 

(R) (required)  

Raster dataset from a GIS platform.  Estimated from rainfall 

 

Soil erodibility 

(K) (required) 

Raster dataset from a GIS platform.  Calculated from ERFAC 

formular (equation 3.3) 

LULC 

(required) 

Raster dataset from a GIS platform. The 

LULC code was an integer.  

Generated from Landsat 

images 

Watersheds 

(required) 

A shapefile of polygons Ghana Geological Survey 

Department 

Biophysical 

Table 

(required) 

Land use land cover classes table in CSV 

format that contains corresponding factors for 

the modelling. 

Land use maps and empirical 

literature 

Threshold flow 

accumulation 

value (required) 

Stream layer from the DEM Generate from DEM in ArcGIS 

10.3 

Ὧὦ and Ὅὅ0 The default values were Ὧὦ = 2 and Ὅὅ0 = 0.5. Use default value 

SDRmax Its default value was 0.8 - 

(Source: Prepared by author from Sharp et al., 2016) 
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Table 3.8. Soil erodibility factor (K_factor) 

Type of soil K_factor  Area (km2) 

Acrisols 0.255 18,328 

Alisols 0.245 318 

Fluvisols 0.295 854 

Leptosols 0.275 206 

Lixisols 0.234 722 

(Source: Ashiagbor et al., 2014) 

Table 3.9. Cover management factor (ulse_c) and support practice factor (usle_p) 

LULC Class Sources for usle_c estimation usle_c usle_p 

Settlement Built up - 0.99 (Adediji et al., 2010) 0.99 1 

Water Kusimi, 2014 0.0000 1 

Forest 0.001 (Roose, 1977) 

0.02 (Adediji et al., 2010) 

0.038 (El-Hassanin et al., 1993) 

0.034 (El-Hassanin et al., 1993) 

0.0233 1 

Open vegetation Woody savanna ï 0.01 (Roose, 1977) 

Woody savanna ï 0.11 (Adediji et al., 2010) 

Shrubs ï 0.4 ï 1.00 (Mati, 1999) 

Grassland ï 0.018 (El-Hassanin et al., 1993) 

Grassland ï 0.014 (El-Hassanin et al., 1993) 

Grassland ï 0.043 (El-Hassanin et al., 1993) 

0.1119 1 

Arable/Bare lands Croplands ï 0.314 (Angima et al., 2003) 

Croplands ï 0.122 (Angima et al., 2003) 

Croplands/Natural ï 0.415 (Angima et al., 2003) 

Croplands - 0.01 ï 0.1 (Roose, 1977) 

Croplands ï 0.16 (Adediji et al., 2010) 

Croplands - 0.68 (Mati, 1999) 

Croplands/Natural ï 0.02 (Mati, 1999) 

Croplands/Natural ï 0.8 (Gobin et al., 1999) 

Croplands/Natural ï 0.33 (Gobin et al., 1999) 

Baren/sparse ï 1 (Adediji et al., 2010) 

Baren/sparse ï 1 (Roose, 1977) 

0.4451 1 
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3.4.1.3 Data needs of the seasonal water yield model 

Data characteristics and sources used to run the seasonal water yield model were described 

in Table 3.10. The Penman-Monteith evapotranspiration method in Instat v3.36 was used 

to calculate the reference evapotranspiration (ETo) inputs for the seasonal water yield 

model.  Average insolation incident on a horizontal surface (MJ/m2/day), relative humidity 

at 2 m above sea level (%), wind speed at 10 m above the surface of the earth (m/s) 

records, from 1983 ï 2010 were downloaded from NASA Power database (NASA 

POWER, 2018) to calculate ETo of stations. Mean temperature input was from the 

observed data from each climate station. Wind speed was converted to 2 m above earth 

surface with factor 1.33. The ETo for 2020 ï 2049 was calculated with SDSM-DC and 

Ensemble mean temperature of each climate station with downloaded average insolation 

incident on a horizontal surface (MJ/m2/day), relative humidity at 2 m (%), wind speed at 

10 m above the surface of the earth (m/s), from 2012 ï 2017 from NASA Power database 

and replicated five times to cover 30 yearsô period. The study assumed that insolation, 

wind speed and relative humidity from 2020 ï 2049 will not differ from the records of 

2012 ï 2017.    

The estimated curve numbers are presented in Table 3.11 whereas crop factor sourced from 

Sharp et al. (2018) are presented in Table 3.12. All maps of monthly precipitation and 

reference evapotranspiration were created in ArcGIS 10.3 with ordinary kriging spatial 

analysis tool because of the distribution of the stations.  Digital Elevation Model (DEM) 

downloaded from Earthdata NASA and hydrological soil groups acquired from 

International Soil Reference and Information Centre (ISRIC) are presented in Fig. 3.7. 
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Table 3.10. Data requirement of the seasonal water yield model 

Name Description and Type Data Source 

ὖὭ,ά Maps of monthly precipitation (mm).  Observed and modelled data 

ET0, ά 

 

Maps of monthly reference evapotranspiration 

(mm) using the Penman-Monteith Equation. 

NASA POWER and climate 

data 

DEM Digital elevation model. Raster of decimals https://urs.earthdata.nasa.gov/ 

LULC Map of LULC. Raster of integers LULC maps (Landsat images) 

Soil group Map of SCS soil hydrologic groups (A, B, C, 

or D), used in combination with the LULC 

map to compute the CN map.  

International Soil Reference 

and Information Centre  

AOI/ 

Watershed 

Shapefile delineating the boundary of the 

basin.  

Ghana Geological Survey 

Department 

Biophysical 

table 

Table comprising, each LULC type: 

Å CN for each soil type 

Å Monthly Kc values 

.csv file with column names: CN_A, CN_B, 

CN_C, CN_D, Kc_1, é.. Kc_12 

Natural Resources 

Conservation Service (NRCS) 

and Agricultural Research 

Service (ARS); Washington 

State Department of 

Transportation  

Rain events 

table 

Table with 12 values of rain events per month. 

A rain event is defined as >0.1mm (USGS). 

.csv file with column names: month and 

events  

Determined from observed and 

modelled rainfall data 

 

Threshold 

flow 

accumulation 

Generated stream layer. Develop from DEM in ArcGIS 

10.3 

‌ά, ‍Ὥ, ‎ Model parameters used for research purposes. 

Default values were: ‌ά = 1/12, ‍Ὥ = 1, ‎=1 

Use default values 

(Source: Prepared by author from Sharp et al., 2016) 
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Table 3.11. Estimated curve number (CN) 

Description CN_A CN_B CN_C CN_D 

Water 0 100 100 100 

Forest 0 50 60 65 

Settlement 0 75 83 86 

Arable/Bare lands 0 68 76 80 

Open vegetation 0 65 77 82 

where A, B, C and D are soil hydrological groups 

(Source: Natural Resources Conservation Service (NRCS) and Agricultural Research 

Service (ARS) [NRCS], 2017; Washington State Department of Transportation [WSDOT], 

2014) 

 

Table 3.12. Other LULC characteristics for SDR model 

Description Kc (1 ï 12) Root depth sedret_eff 

Water 1 800 0.43 

Forest 1 7000 0.6 

Settlement 0.3 350 0.05 

Arable/Bare lands 0.56 1300 0.28 

Open vegetation 0.74 4000 0.47 

Kc = plant evapotranspiration coefficient; sedret_eff = sediment retention efficiency 

(Source: Prepared by author from Sharp et al., 2018) 
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Fig. 3.7. DEM and Hydrological soil groups (250 m) in the Pra River Basin 

(Source: Prepared by the author with data from NASA earthdata and Soilgrids) 

 

 

 

 

 

 

 

 

 

 








































































































































































































